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Abstract 

The COVID-19 pandemic has had a significant impact on daily life, affecting both physical and mental health. Changes 
arising from the pandemic may longitudinally impact health-related behaviors (HRB). As different HRBs co-occur, in 
this study, we explore how six HRBs - alcohol (past-week and binge-drinking), tobacco, marijuana, benzodiazepine 
use, and unhealthy food consumption - were grouped and changed over time during the COVID-19 pandemic. A 
sample of 1038 university students and staff (18 to 73 years old) of two universities completed an online psycho‑
metrically adequate survey regarding their recalled HRB (T0, pre-COVID-19 pandemic) and the impact of COVID-19 on 
their behaviors during July (T1) and November (T2). Latent Transition Analysis (LTA) was used to identify HRB cluster 
membership and how clusters changed across T0, T1, and T2. Four clusters emerged, but remained mainly stable over 
time: ‘Lower risk’ (65.2–80%), ‘Smokers and drinkers’ (1.5–0.01%), ‘Binge-drinkers and marijuana users’ (27.6–13.9%), 
and ‘Smokers and binge-drinkers’ (5.6–5.8%). Participants who moved from one cluster to another lowered their HRB 
across time, migrating from the ‘Binge-drinkers and marijuana users’ cluster to ‘Lower risk’. Participants in this cluster 
were characterized as less affected economically by the COVID-19 pandemic, with lower reported stress levels, anxi‑
ety, depression, and loneliness than the other clusters. Our results provide evidence of how HRBs clustered together 
and transitioned longitudinally during the COVID-19 pandemic. HRB clustering across time offers a valuable piece of 
information for the tailoring of interventions to improve HRB.
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Introduction
Alcohol, tobacco, marijuana, benzodiazepine use, and 
unhealthy food consumption are among the major causes 
of morbidity and mortality worldwide [1]. Because these 
behaviors contribute to the development of non-commu-
nicable diseases such as cardiovascular disease, cancer 
and mental disorders, they are considered health-related 

behaviors (HRBs). HRBs do not occur in isolation but 
rather commonly co-occur or cluster together [2–5]. 
HRBs are more detrimental to health and wellbeing in 
clusters than individually; moreover, they have a higher 
combined risk of early mortality [6, 7]. Understanding 
how HRBs cluster together may provide relevant infor-
mation for effective interventions aimed at the higher 
risk groups [8, 9]. Accordingly, the WHO has recom-
mended tackling chronic diseases based on a preventive 
approach to multiple HRBs [10].

Literature on clustering HRBs has shown that alcohol 
and tobacco consumption are usually grouped together 
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[3, 4, 11]. Furthermore, research has also found co-occur-
rence patterns among alcohol, marijuana, and tobacco 
consumption [12–14] and between alcohol, tobacco, and 
poor diet [15, 16]. However, to our knowledge, no study 
has reported how alcohol, tobacco, marijuana, benzodi-
azepine use, and unhealthy diet cluster together and how 
the clustering of HRBs could be affected and change over 
time, especially during the COVID-19 pandemic.

Engaging in multiple HRBs can be affected by external 
events, such as economic, traumatic, natural, and envi-
ronmental crises [17–20]. Evidence reporting the effects 
of the COVID-19 pandemic has shown an increase in 
negative emotional states such as anxiety, depression, 
stress, confusion, anger, and frustration, which are asso-
ciated with being involved in multiple HRBs [21–28]. 
The restriction of social and recreational contexts due to 
measures implemented to prevent the spread of COVID 
(i.e., lockdowns, work from home, and social distancing) 
raises the need to monitor how HRB co-occurrence has 
changed throughout the pandemic.

During a crisis, such as the pandemic, two scenarios 
are expected: increased HRB due to high levels of emo-
tional distress [29] or decreased HRB due to reduced 
accessibility to substances [18, 30]. Current evidence on 
changes in individual HRBs during the pandemic has 
reported support for both possible results: an increase 
and decrease in alcohol [31–33] and tobacco consump-
tion [34–36]. Meanwhile, marijuana use has remained 
stable [37] or has increased [38–40], especially in people 
who have been in lockdown [41]. In relation to unhealthy 
food consumption, results finding an increase are robust 
[21, 40, 42–44]. Regarding the use of benzodiazepines, a 
few studies have reported a reduction compared to pre-
vious years [45]; however, data from a non-probabilistic 
and self-selected sample survey in Chile have shown 
an increase in the use of benzodiazepines without pre-
scription when compared with pre-pandemic data [46]. 
Benzodiazepine is a psychotropic drug with sedative/
anxiolytic and hypnotic effects which acts by enhanc-
ing the effects of gamma-aminobutyric acid (GABA), an 
inhibitory neurotransmitter in the central nervous sys-
tem [47].

While previous studies have shown changes in sub-
stance use and unhealthy food consumption during the 
pandemic, to our knowledge, there is no evidence on how 
these HRBs co-occur and whether this clustering has 
changed during the pandemic. The present study focuses 
on HRB during the COVID-19 pandemic in a univer-
sity setting (students and staff). Using latent transition 
analysis, we explored how HRBs clustered during the 
pandemic and whether participants shifted to different 
clusters according to their changes in behavior during the 
pandemic period. Finally, we also examined emotional 

distress and social demographic participant characteris-
tics that shifted from one cluster to another across differ-
ent times during the pandemic.

Material and methods
Participants and procedure
A purposive non-probabilistic longitudinal survey was 
implemented in July (Time 1, T1) and November (T2), 
2020 to collect data about HRB among university stu-
dents and staff (academic and non-academic) from two 
universities, one located in the southern and one in the 
northern region of Chile. In the first assessment, par-
ticipants retrospectively reported their HRB prior to 
the COVID-19 pandemic (T0, n = 1038) and during 
the pandemic (T1, n = 1038 and T2, n = 430). Informed 
consent to participate in the study was obtained from 
all participants prior to complete online surveys (about 
15 minutes). The Ethics Committee of both universi-
ties approved this study (Res. 086/20 on July 2020 and 
11/2020 on June 2020). Sample characteristics are 
described elsewhere in Salazar-Fernández et al. [22] and 
Salazar-Fernández et al. (2021b).

Measures
Six HRBs were measured for cluster membership: ciga-
rettes per day, past-week alcohol and unhealthy food 
consumption, monthly frequency of binge drinking, mar-
ijuana and benzodiazepine use. See Table 1 for the items, 
response options and treatment for the HRB variables 
used to examine clustering.

Several variables were used as covariates to analyze 
their association with the resulting clusters. These vari-
ables were: age, gender, ethnic minority group (partici-
pants could identify as belonging to an ethnic group if 
they were from one of the ten ethnic groups recognized 
by the law of Chile: Atacameño or Likán Antai, Aymara, 
Coya, Diaguita, Kawésqar, Mapuche, Quechua, Rapa Nui, 
and Yagán or Yámanam or not), and region (if they live in 
the northern, southern or another region of Chile). Emo-
tional distress was measured using the short version of 
the Depression, Anxiety, and Stress Scale, DASS-21 [48, 
49] using a 4-point severity scale. The perceived impact 
of COVID-19 was assessed through three questions 
inquiring about its interpersonal, health and economic 
effects (5-point scale from “not at all” to “a lot”). Finally, 
loneliness was assessed using a frequency item (4-point 
scale from “never” to “always or almost always”).

Statistical analyses
Latent transition analysis
Latent Transition Analysis (LTA) was used to identify 
HRB cluster membership across the three data times 
(i.e., T0, T1 and T2). According to Collins and Lanza 
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[50] LTA models consist of three parameters: (a) the 
probability of being in a particular HRB cluster at each 
time; (b) the probability of the person’s response to 
each HRB variable given their HRB cluster membership 
at each time; (c) the probability of transitioning to a dif-
ferent HRB cluster at a subsequent time (i.e., T1 and 
T2), given their HRB cluster membership at baseline 
(i.e., T0). To determine an optimal number of clusters, 
several LTA models were estimated, adding another 
cluster (k) to each consecutive model and comparing 
entropy and fit indices to the previous model (k-1). 
Entropy above 0.8 indicates low classification error in 
HRB cluster assignment [51]. Fit statistics included log-
likelihood, Akaike Information Criterion (AIC), Bayes-
ian Information Criterion (BIC), and adjusted Bayesian 
Information Criterion (aBIC), whereby a lower number 
indicates an improvement in model fit [50, 52]. Miss-
ing data was handled in the LTA models using a Full 
Information Maximum Likelihood Function, under 
the missing at random (MAR) assumption [53], using 
Mplus version 8.1 [54].

Cluster membership and covariates
Bivariate analyses, using one-way ANOVA, Kruskal-Wal-
lis and/or Chi-square Fishers Exact test, were undertaken 
to show the means and/or proportions for covariates 
according to cluster membership. The effect size for 
continuous variables was addressed using eta squared. 
Following the bivariate analyses, multinomial logistic 
regression models were run in Stata/SE version 15 [55]. 
,These models tested whether associations between HRB 

cluster membership and covariates identified through the 
bivariate analyses remained statistically significant after 
mutually adjusting for other covariates in the model. To 
prevent under-estimated standard errors in the regres-
sion models, we adjusted for classification error associ-
ated with cluster assignment [56].

Results
Our sample age was 18 to 73 years (M = 29.52, 
SD = 11.66), 69% were female, and only 18.4% declared 
themselves as belonging to an ethnic minority group. 
Most of these were Mapuche (16.2%) and Aymara (1.6%), 
the rest were Diaguita, Kawésqar, and Quechua. Of the 
total sample, 67.3% lived in the southern region. Several 
descriptive statistics and frequency analysis were per-
formed on the total sample to explore the health-related 
variables (see Table 2). Then, we proceed with the LTA.

Latent transition analysis
Based on the LTA model fit statistics (see Supplementary 
Table 1), the 4-cluster model was selected. The 2- and 3- 
cluster models had a higher log-likelihood, AIC, BIC and 
aBIC statistics than the 4-cluster model. The 5-cluster 
model could not be estimated, likely due to data sparse-
ness. The HRB cluster assignment classification error in 
the original latent variable was considered to be low for 
all of the models, indicated by an entropy of 0.9.

Cluster patterns and membership
Based on the LTA item response probabilities and means 
(see Table  2), the 4 clusters were labelled as follows: 

Table 1  HRB variables used for clustering

Variables/Covariables Item Response option Variable treatment

HRB for clustering Cigarettes How many cigarettes have 
you smoked per day?

From 0 to 40 cigarettes or 
more.

-

Alcohol consumption In the past week, how many 
drinks did you consume?

From 0 to 20 drinks or more. Weekly quantity of drinks was 
calculated based on the num‑
ber of drinks consumed each 
day in the previous week.

Unhealthy food consumption During the last week, on 
how many days have you 
consumed fried meals, sugary 
drinks, desserts or candies, 
unhealthy snacks and fast 
food.

From 0 to 7 days. Responses were summed to 
provide a total score indicat‑
ing total score of weekly 
unhealthy food consumption.

Binge drinking Thinking back to the past 30 
days, how often have you had 
5 or more drinks on a single 
occasion?

Responses were scored on 
a 6-point scale: never, once, 
twice, 3 to 5 times, 6 to 9 
times, and 10 or more times.

-

Marijuana use Have you smoked marijuana? Yes/No -

Benzodiazepines use Have you taken self-medi‑
cated tranquilizers?

Yes/No -
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‘Lower risk, ‘Smokers and drinkers’, ‘Marijuana and alco-
hol users’ and ‘Smokers and binge-drinkers’. The ‘Lower 
risk’ cluster was the largest and had low-risk levels of 
HRB in comparison with the other clusters. Very few 
members of this cluster smoked cigarettes, engaged in 
binge drinking or substance use. The ‘Smokers and drink-
ers’ cluster was very small (0.01 to 1.5%), with riskier 
HRB. Members of this cluster smoked more cigarettes 
per day, consumed more alcoholic drinks in the previous 
week and reported a higher frequency of binge drinking 
than the other clusters. Members of the ‘Binge-drinkers 
and marijuana users’ cluster, the second largest, had very 
few daily smokers but a higher proportion smoked mari-
juana relative to the other clusters. The consumption of 
unhealthy food was also higher in this cluster than the 
others. The ‘Smokers and binge-drinkers’ cluster was also 
very small (5.1 to 5.8%). Members of this cluster smoked 
fewer cigarettes per day, reported a higher frequency 
of binge drinking, and had a higher consumption of 
unhealthy food than members of the ‘Smokers and drink-
ers’ cluster.

The LTA transition probabilities (see Table 3) indicated 
that most participants remained in the same HRB cluster 

across the three times. However, amongst those who did 
move, 43% of the ‘Binge-drinkers and marijuana users’ 
cluster transitioned to the ‘Lower risk’ cluster at T1 and 
16% did so at T2. Further analyses showed that those who 
moved from the ‘Binge-drinkers and marijuana users’ 
cluster were more likely to be younger (≤ 25 years old) 
than those who stayed (see Supplementary Table 2).

Cluster membership and covariates
Bivariate analyses uncovered associations between HRB 
cluster membership and covariates measured at the same 
time (see Table  4, Supplementary Tables  3 and 4). HRB 
cluster membership and stress and anxiety scores were 
significant (p < 0.05, both η2 = .010) at T1 and T2. Mem-
bers of the ‘Lower risk’ cluster tended to have lower levels 
of stress and anxiety, than the other three clusters. Age 
was associated with HRB cluster membership at T0 and 
T1, but not T2. Members of the ‘Smokers and drinkers’ 
cluster tended to be older than the ‘Lower risk’ cluster, 
and those in the ‘Binge-drinkers and marijuana users’ 
cluster were younger than the ‘Lower risk’ cluster at 
T0. However, due to movement of younger participants 
from the ‘Binge-drinkers and marijuana users’ cluster 

Table 2  Health risk behaviors among the university sample (n = 1038)

Total sample Cluster 1 ‘Lower risk’ Cluster 2 
‘Smokers and 
drinkers’

Cluster 3 ‘Binge-
drinkers and 
marijuana users’

Cluster 4 ‘Smokers 
and binge-
drinkers’

Cluster prevalence n n (%) n (%) n (%) n (%)
  T0 1038 677 (65.2) 16 (1.5) 287 (27.6) 58 (5.6)

  T1 1038 814 (78.4) 13 (1.3) 157 (15.1) 53 (5.1)

  T2 430 830 (80.0) 4 (0.01) 144 (13.9) 60 (5.8)

Mean and standard errors (S.E) Mean (S.E) Mean (S.E) Mean (S.E) Mean (S.E) Mean (S.E)
  Cigarettes smoked per day 0.56 (1.76) 0.04 (0.01) 10.60 (0.37) 0.28 (0.05) 4.44 (0.13)

  Total weekly number of alcoholic drinks 2.55 (3.49) 1.12 (0.08) 6.43 (1.52) 5.36 (0.70) 4.46 (0.54)

  Total weekly score of unhealthy food 
consumption

8.89 (5.87) 8.82 (0.19) 8.92 (1.33) 10.04 (0.41) 9.87 (0.74)

Item response probabilities (IRP) and 
standard errors (S.E)

(%) IRP (S.E) IRP (S.E) IRP (S.E) IRP (S.E)

Monthly frequency of binge drinking

  Never 52.5 0.84 (0.03) 0.50 (0.09) 0.08 (0.03) 0.39 (0.05)

  Once 27.6 0.14 (0.02) 0.12 (0.05) 0.39 (0.05) 0.23 (0.04)

  Twice 11.4 < 0.01(< 0.01) 0 0.30 (0.03) 0.16 (0.03)

  3 to 5 times 6.4 < 0.01(< 0.01) 0.24 (0.13) 0.20 (0.04) 0.17 (0.04)

  6 to 9 times 1.3 0 0.15 (0.11) 0.02 (0.01) 0.05 (0.02)

  10 times or more 0.3 0 0 0.01 (0.01) 0

Marijuana use

  No 81.6 0.88 (0.02) 0.65 (0.10) 0.44 (0.05) 0.62 (0.05)

  Yes 17.9 0.12 (0.02) 0.35 (0.10) 0.56 (0.05) 0.38 (0.05)

Benzodiazepine use

  No 86.3 0.90 (0.01) 0.79 (0.07) 0.80 (0.03) 0.80 (0.04)

  Yes 13.2 0.10 (0.01) 0.21 (0.07) 0.20 (0.03) 0.21 (0.04)
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to the ‘Lower risk’ cluster (as mentioned above), the age 
of members of both clusters was similar at T1. Feeling 
lonely was associated with HRB cluster membership at 
T0, but not at T1 or T2, with members of the ‘Lower risk’ 
cluster feeling less lonely than those in the other clusters. 
The perceived negative economic impact of the pandemic 
was significant at T1, members of the ‘Lower risk’ clus-
ter reported being less affected in economic terms than 
members of the other clusters. None of the remaining 
covariates showed associations with the HRB clusters.

Multinomial logistic regression models, adjusting for 
classification error and other covariates in the model (see 
Supplementary Tables  5, 6 and 7), identified that mem-
bers of the ‘Binge-drinkers and marijuana users’ clus-
ter were younger than those in the ‘Lower risk’ cluster 
at T0 and older at T1. Members of the ‘Binge-drinkers 
and marijuana users’ cluster had a greater risk of feel-
ing lonely than those in ‘Lower risk’ cluster at T0. The 
perceived negative economic impact of the pandemic 
remained significant at T1, members of the ‘Smokers 
and binge-drinkers’ cluster were more negatively affected 
than members of the ‘Lower risk’ cluster. Moreover, 
at T1, members of ‘Smokers and drinkers’ cluster had 
higher levels of anxiety than the ‘Lower risk’ cluster.

Discussion
In this study, we explored HRB clusters and changes dur-
ing the COVID-19 pandemic. At T0, we identified four 
clusters ‘Lower risk’, ‘Smokers and drinkers,’ ‘Binge-drink-
ers and marijuana users,’ and ‘Smokers and binge-drink-
ers.’ The LTA showed that most participants remained in 
the same HRB cluster during T1 and T2, but those who 
moved tended to improve their HRB across time, migrat-
ing to the ‘Lower risk’ cluster.

Our ‘Lower risk’ cluster is consistent with previous 
pre-pandemic studies that have found a predominant 
‘healthier’ cluster grouping of most participants [3]. We 
also found that members of the ‘Lower risk’ cluster were 
older, were less affected economically by the COVID-19 
[17], and reported lower levels of stress, anxiety, depres-
sion, and loneliness than the others clusters [57]. Fur-
thermore, members of ‘Binge-drinkers and marijuana 
users,’ the second-largest cluster found in our study, were 
younger and reported a greater risk of loneliness than the 
other clusters [58–60].

We found that young people (≤ 25 years old) were more 
likely to move from the ‘Binge-drinkers and marijuana 
users’ cluster to the ‘Lower risk’. This finding is consist-
ent with other study with university students were almost 
25% of participants reported a decrease in binge drink-
ing, however reported no change in marijuana use [37]. 
This could be because of the social nature of consump-
tion among young people, which has been particularly 
affected by the measures to contain the COVID pan-
demic [32, 37]. Thus, alcohol use prevention policies at 
the university level must not only encourage a reduction 
in social and commercial access to alcohol and tobacco 
[61], but also promote alternative substance-free social/
recreational activities [62].

In contrast to other results [63, 64], in this study, we 
found that weekly unhealthy food consumption was not a 
distinctive HRB for clustering since it was high in all four 
clusters. These findings are consistent with other stud-
ies on the Chilean population before [65] and during the 
COVID-19 pandemic reporting an increase in unhealthy 
food consumption [66, 67] and excess weight [68].

Our findings confirm previous evidence that multi-
ple HRBs cluster together [2, 37], particularly regarding 

Table 3  Transition probabilities of health risk behaviors clusters

Transition probabilities in bold correspond to staying in the same HRB cluster

Transition probabilities sum to 1.0 (with rounding error) across rows
a Transitions not estimated in model but instead fixed to 0 in Mplus
b Transitions < 0.01 and rounded to 0

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Transition probabilities from T0 (rows) to T1 (columns)
  Cluster 1: ‘Lower risk’ 0.99 0a 0a 0.01

  Cluster 2: ‘Smokers and drinkers’ 0.37 0.31 0.13 0.19

  Cluster 3: ‘Binge-drinkers and marijuana users’ 0.43 0b 0.52 0.05

  Cluster 4: ‘Smokers and binge-drinkers’ 0.33 0.14 0.06 0.47
Transition probabilities from T1 (rows) to T2 (columns)
  Cluster 1: ‘Lower risk’ 0.98 0a 0.02 0.01

  Cluster 2: ‘Smokers and drinkers’ 0a 0.38 0a 0.63

  Cluster 3: ‘Binge-drinkers and marijuana users’ 0.16 0a 0.82 0.03

  Cluster 4: ‘Smokers and binge-drinkers’ 0.27 0.05 0.11 0.58
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the strong association between smoking and alcohol 
consumption or heavy episodic drinking [2–4]. Hence, 
person-centred strategies should be considered when 
targeting any HRB. Our research provides useful infor-
mation identifying HRB clusters and how they change 
longitudinally during the COVID-19 pandemic. Our 
results suggest interventions targeting depression, 
anxiety, stress, and loneliness are needed to facili-
tate improvements in HRB regarding cluster member-
ship. Therefore, academic institutions should focus on 
strengthening mental health prevention and promotion 
for students and staff [60, 69]. Institutions also need to 
improve health education to prevent HRB [70], espe-
cially unhealthy food consumption, which was generally 

observed in the sample, and can lead to greater health 
problems [71].

Despite its strengths, our study had some limitations: 
(1) the data relies on self-reported measures of HRB, 
which can be biased (i.e., social desirability); this could 
explain the larger size of the ‘Lower risk’ cluster com-
pared to the smaller sizes of ‘Smokers and drinkers’ and 
‘Smokers and binge-drinkers’ [72]; (2) the online col-
lected sample is limited to students and university staff 
(mostly women) who have not been directly exposed 
to the economic effects of the pandemic (e.g., main-
tained their jobs and have been teleworking); (3) as this 
study used self-selection sampling, the results might be 
affected by selection bias; however, given the pandemic 

Table 4  Bivariate analyses using health risk behaviors cluster membership and covariates at T1

* p < 0.05 using one-way ANOVA
± p < 0.01 using Kruskal-Wallis
** p < 0.01 using Fisher’s Exact test

Cluster 1 ‘Lower risk’ 
n = 814 (79)

Cluster 2 ‘Smokers and 
drinkers’ n = 14 (1)

Cluster 3 ‘Binge-drinkers and 
marijuana users’ n = 157 (15)

Cluster 4 ‘Smokers and 
binge-drinkers’ n = 52 
(5)

n (%) n (%) n (%) n (%)

Age**

   < =25 459 (80) 3 (1) 84 (15) 26 (4)

  26+ 355 (76) 11 (2) 73 (16) 26 (6)

Gender
  Female 566 (79) 9 (1) 110 (15) 31 (4)

  Male 235 (77) 4 (1) 46 (15) 22 (7)

Loneliness
  Never/Rarely/Sometimes 487 (80) 8 (1) 83 (14) 34 (5)

  Frequently/Always 326 (77) 6 (1) 74 (17) 19 (4)

Perceived negative impact on economic or employment status**

  Not at all/A little/Some/ 654 (80) 12 (1) 119 (15) 35 (4)

  Quite a bit/A lot 159 (73) 2 (1) 38 (18) 18 (8)

Perceived negative impact on personal relationships with family or friends
  Not at all/A little/Some/ 586 (80) 9 (1) 101 (14) 35 (5)

  Quite a bit/A lot 227 (74) 5 (2) 56 (18) 18 (6)

Perceived negative impact on own or loved ones’ health
  Not at all/A little/Some/ 665 (80) 10 (1) 121 (14) 39 (5)

  Quite a bit/A lot 148 (73) 4 (2) 36 (18) 14 (7)

Ethnic minority group
  No 667 (79) 14 (2) 122 (14) 44 (5)

  Yes 147 (77) 0 35 (18) 9 (5)

Region
  Northern region 170 (78) 2 (1) 37 (17) 10 (5)

  Southern region 532 (79) 10 (1) 105 (16) 30 (4)

  Another region 85 (77) 2 (2) 12 (11) 12 (11)

Depression Mean (SD) 7.00 (5.54) 6.75 (5.21) 8.13 (5.31) 8.56 (6.81)

Anxiety Mean (SD)*± 5.04 (5.20) 6.83 (8.02) 6.08 (5.15) 6.76 (6.11)

Stress Mean (SD)*± 7.86 (5.44) 7.33 (7.57) 9.26 (4.86) 9.16 (6.61)
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restrictions, it would not have been feasible to conduct 
a more robust sampling; (4) we only explored HRB after 
4 months of the pandemic, thus it is possible that larger 
lags could have implied more transitions of participants 
between clusters as opposed to participants remaining 
in the same clusters, and (5) as in many studies [73, 74], 
the measures for marijuana and benzodiazepines use in 
this study were categorical and not continuous, as Becher 
[75] has stated this could lead to model misspecification 
and high residual confounding. Therefore, future studies 
should consider addressing these limitations and the pos-
sible increase in HRB associated with lifting the COVID-
19 restrictions because social and recreational gatherings 
will eventually return to daily life dynamics, especially 
among university students.

Conclusions
During COVID-19, we identified 4 clusters of health-
related behaviors in adults and how they transitioned 
over time between clusters. Most of the participants 
remained stable during follow up and those who moved 
were more likely to improve their HRB transitioning to 
the ‘Lower risk’ cluster. This was especially true in young 
people who changed from ‘Binge-drinkers and marijuana 
users’ cluster to the ‘Lower risk’ cluster. Without the 
social restrictions due to the pandemic, substance-free 
social opportunities should be provided for young peo-
ple. Our results show that HRBs tend to cluster, so any 
prevention effort should take into consideration the ways 
in which people become involved in different HRBs and 
the factors leading to these behaviors.
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