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Abstract 

Background:  COVID-19 has caused over 305 million infections and nearly 5.5 million deaths globally. With complete 
eradication unlikely, organizations will need to evaluate their risk and the benefits of mitigation strategies, including 
the effects of regular asymptomatic testing. We developed a web application and R package that provides estimates 
and visualizations to aid the assessment of organizational infection risk and testing benefits to facilitate decision-mak-
ing, which combines internal and community information with malleable assumptions.

Results:  Our web application, covidscreen, presents estimated values of risk metrics in an intuitive graphical format. 
It shows the current expected number of active, primarily community-acquired infections among employees in an 
organization. It calculates and explains the absolute and relative risk reduction of an intervention, relative to the base-
line scenario, and shows the value of testing vaccinated and unvaccinated employees. In addition, the web interface 
allows users to profile risk over a chosen range of input values. The performance and output are illustrated using 
simulations and a real-world example from the employee testing program of a pediatric oncology specialty hospital.

Conclusions:  As the COVID-19 pandemic continues to evolve, covidscreen can assist organizations in making 
informed decisions about whether to incorporate covid test based screening as part of their on-campus risk-mitiga-
tion strategy. The web application, R package, and source code are freely available online (see “Availability of data and 
materials”).
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Background
As the COVID-19 pandemic’s third year begins, over 
305  million known cases of the disease have been 
reported globally, and nearly 5.5 million of these people 

have died [1]. Estimates of excess deaths are even higher, 
at more than 19  million [2]. Massive efforts have made 
a COVID-19 vaccine available to over 4.5 billion people 
[3]. However, almost half of the global population has 
remained ineligible, unable or unwilling to be vaccinated, 
and the burden has been disproportionately observed in 
low-income countries [4]. In addition, the emergence of 
the Omicron variant of the virus has complicated recov-
ery efforts by increasing the level of vaccination cover-
age needed, and future variants bring the possibility of 
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further vaccine evasion, more severe disease, or other 
phenotypic changes [5].

Complete eradication of SARS-CoV-2 appears highly 
unlikely due to limited vaccination rate in certain 
regions or among the vulnerable population, waning 
immunity after infection, and continued emergence of 
new variants with phenotypic changes [4–7]. Instead, 
governments, societies, and organizations must adapt 
to the threat presented by COVID-19 while maintain-
ing organizational operations and individual quality of 
life. Many organizations have required some combina-
tion of employee vaccination and regular testing; in the 
US, many organizations with federal contracts are man-
dated to do so [8]. An example organization requiring 
such measures are healthcare organizations, where there 
is often an increased risk of exposure, severe disease, or 
both. This testing strategy is commonly enhanced and 
supplemented by additional strategies, including sample 
pooling to increase testing capacity and smartphone-
based screening tools to efficiently identify and isolate 
symptomatic individuals in time or to track symptom 
progression [9–12]. Such strategies work in tandem with 
asymptomatic testing but can also change the testing 
needs and testing capacity of an organization.

As a result, though many organizations previously or 
currently require regular asymptomatic COVID-19 test-
ing among unvaccinated and some vaccinated employees, 
the value of such strategies has not been formally evalu-
ated and remains unclear. At a minimum, this impairs 
decision-making through lack of information on true 
organizational risk and the benefits offered by asymp-
tomatic testing. It is likely that some organizations will 
assertively judge an expensive testing strategy as too 
costly for the benefits; on the other hand, other organiza-
tions may adopt unnecessarily aggressive and costly test-
ing strategies that far exceed their needs. With our web 
app, we aim to provide organizations with a flexible vis-
ual tool that can aid leaders in making decision through-
out the pandemic.

Covidscreen
A simulation-based approach was developed in 2020 
to assess the benefits of different asymptomatic test-
ing strategies in a hypothetical organization. The sim-
ulation used information on community case rates, 
asymptomatic-to-symptomatic case ratio, and assumed 
infectiousness periods to estimate the reduction in active 
cases on campus achieved by regular asymptomatic test-
ing. It profiled the number of circulating active cases 
brought in from the community for a range of inputs, 
assuming the organization actively carries out other on-
campus non-pharmaceutical intervention measures, such 
as mask mandate and timely testing as well as isolating 

symptomatic individuals, so that the on-campus trans-
mission is reasonably assumed minimal and negligible. 
The results were intended to inform decisions on the 
type and strength of asymptomatic testing interventions 
needed.

With the future of COVID-19 uncertain, organiza-
tions may need to make such decisions repeatedly and in 
a variety of changing circumstances. To assist with these 
decisions, we present an application called covidscreen 
that combines information on a specific organizational 
setting with community context and assumption values 
which can be further customized by the user regarding 
the performance of various asymptomatic testing strat-
egies. The application provides a graphical user inter-
face (UI) that presents the estimated benefits of a given 
asymptomatic testing strategy, as well as untangling 
interactions between vaccination and testing benefits. It 
allows interested users with advanced knowledge to cre-
ate risk profiles that illustrate relationships between risk, 
interventions, and projection assumptions.

Similar work
Several applications have been developed to quantify 
individual-level risk of infection or exposure. One of the 
first and most well-known is a tool from Chande et  al. 
that combines real-time data from aggregation sites 
with a binomial model to estimate the risk of exposure 
for a given event size in different areas of the United 
States [13]; a similar tool calculates the risk of infec-
tion and compares it with a “risk budget” [14]. Other 
tools estimate the risk of severe disease using detailed 
self-reported data [15, 16]. Paltiel et  al. and others have 
addressed cost-effectiveness directly in the literature but 
do not provide tools to make such assessments accessible 
and customizable by decision-makers [17].

Few user-friendly tools have been developed to help 
quantify and visualize estimated organizational risk asso-
ciated with a given context or the expected benefits of a 
selected asymptomatic testing strategy. covidscreen fills 
such a gap. Below, we give an overview of this functional-
ity through a case study of asymptomatic employee test-
ing program at St. Jude Children’s Research Hospital, a 
pediatric specialty hospital located in Memphis, Tennes-
see, USA. Following, we consider the potential applica-
tions and the limitations of this new tool.

Implementation
Probability model
The application allows easy usage of an underlying 
probability model. This model considers five binary 
random indicator variables: vaccination ( V  ), infec-
tion ( I  ), symptoms ( S ), testing ( T  ), and detection ( D ). 
Each variable indicates the presence or absence of the 



Page 3 of 11Smith et al. BMC Public Health         (2022) 22:1361 	

associated state for an individual at a particular point in 
time, for example, V = 1 indicates that an individual is 
vaccinated, while T = 0 indicates that an individual has 
not been tested today. P(V ) , P(I) , P(S) , P(T ) , and P(D) 
represent the probability of an individual being in the 
respective state; equivalently, they can represent the 
proportion of individuals in an organization expected 
to be in that state. The resulting model is a joint dis-
tribution of these variables, derived analytically from 
user-customized or default inputs. The general equa-
tion for this distribution is Eq. 1, which is represented 
graphically in Fig.  1. For details of the derivation, see 
Additional file 1.

Equation 1: Probability model underlying covidscreen

Backend development
This model is implemented in the R programming lan-
guage (v4.1), primarily using the data.table package 
(v1.14) for data manipulation and Shiny framework (v1.7) 
for communication with the UI [18–20]. The probability 
model above is implemented using a series of full joint 
distributions and multiplication operations between each 
term (distribution) in Eq.  1, starting with the first and 

�(V , I , S,T ,D) = �(V ) ⋅ �(I|V ) ⋅ �(S|I ,V ) ⋅ �(T |S,V ) ⋅ �(D|T , I)

proceeding to the right. Probabilities within each term 
are calculated using the parameters passed from the UI 
and the equations in Additional file 1.

Inputs are passed from the UI and grouped into catego-
ries corresponding to variables in the probability model. 
After grouping, inputs are validated to ensure proper 
support. If any validation fails, calculation is halted, and 
the user is shown a warning until input is corrected. 
After validation, inputs are converted to corresponding 
probabilities and used to calculate the conditional distri-
butions of each variable. The full probabilistic model is 
implemented correspondingly Eq. 1. Details can be found 
in Additional file 1.

The outputs available in the UI are calculated by filter-
ing to specified variable values and summing over cor-
responding probabilities. For example, the probability of 
“undetected cases” is the sum of all probabilities where 
I = 1 and D = 0. Shiny’s reactive programming framework 
allows outputs to update in real time as users change 
their inputs. A simplified version of the reactive graph 
(i.e., the backend architecture) is shown in Fig. 2.

The R package is freely available to R users. Summary 
functions are provided for the risk-based metrics in the 
web application; a suite of classification metrics for the 
asymptomatic testing program is also provided to aid 
more advanced performance assessments.

Frontend development
The UI is implemented in R Shiny [18, 20]. Interactive 
graphics are displayed using an R interface to the High-
charts library [21, 22]. The interface is organized as a 
website, with a landing page, a “Scenarios” tab, a “Profil-
ing” tab, and an “FAQ” tab. External links to code, paper, 
and documentation are included as well.

Primary outputs are presented on the “Scenarios” tab 
in graphical and text format; more detailed outputs can 
be created in the “Profiling” tab. The presented outcomes 
were chosen based on the authors’ experiences in evalu-
ating asymptomatic testing strategies for an organization 
throughout the pandemic. The text and graphical rep-
resentations were chosen through consultation of best 
practices for health risk communication [23].

Inputs
Inputs in the UI are grouped into three categories: 
“Organization”, “Community”, and “Advanced”; by default, 
“Advanced” inputs are hidden and only available when 
users invoke it. Probabilistic inputs are shown as sliders 
between 0% and 100%; numeric inputs are displayed as 
numeric boxes. A full list of user inputs and their default 
values is shown in Table 1.

Organizational input, including the frequency of 
asymptomatic testing in vaccinated members, frequency 

Fig. 1  Directed acyclic graph of dependencies in the proposed 
model. Arrows indicate the direction of causal influences. Note 
that infection (I) can only cause testing (T) through the presence 
of symptoms (S), and symptoms can only cause detection through 
testing. Also, note that vaccination (V) is independent of all other 
variables
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of testing unvaccinated members, proportion of the 
organization vaccinated, and size of the organization are 
listed in this section. Community inputs are the number 
of daily cases per 100,000 people and the proportion of 
the community vaccinated.

Advanced parameters are split into three sub-sections: 
Vaccine Efficacy, Symptoms, and Testing. Vaccine efficacy 
is the relative reduction in infection risk for vaccinated 
population compared to the unvaccinated population. 
Symptom parameters include the time from exposure to 

Fig. 2  Backend Computation Graph. Inputs are gathered and validated prior to use. If validation fails, no further computation occurs. Conditional 
distributions of each variable are created using these inputs, then joined and multiplied sequentially to build up an unconditional distribution. This 
distribution is summarized for each output, and results are passed back to the user interface. This process occurs after each change to user input, 
but only the necessary components are updated each time

Table 1  User inputs and defaults

Advanced parameters are split into groups for vaccination (V), testing (T), and symptoms (S), and are intended to need minimal user input. Organization and 
community parameters are intended to be set by users; the defaults are set to values that provide illustrative outcome plots to assist user comprehension. Note: a 0 
indicates no screening

Organization
Input Default

Organization Size 1000 people

Vaccinated Testing Frequency 0a days

Unvaccinated Testing Frequency 7 days

% Organization Vaccinated 50%

Community
Input Default

Daily Cases per 100k 250 new cases

% Community Vaccinated 50%

Advanced
Group Input Default

V Vaccine Efficacy 30%

T Test Sensitivity 85%

T Test Specificity 100%

T % Symptomatic Tested 100%

S Symptomatic Period 5 days

S Pre-symptomatic Period 5 days

S % Symptomatic: Unvaccinated Cases 50%

S % Symptomatic: Vaccinated Cases 15%

S % Symptomatic: Non-Cases 2%
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symptom onset, the duration of symptoms, if an asymp-
tomatically infected person eventually becomes sympto-
matic, the proportion of vaccinated cases that eventually 
show symptoms, and the proportion of unvaccinated cases 
that eventually show symptoms. Testing parameters are 
the likelihood of a symptomatic individual seeking testing 
(assuming timely symptomatic testing and isolation options 
are readily available), test sensitivity, and test specificity.

Scenarios
The “Scenarios” tab contains three graphics and accom-
panying text. The first graphic displays on-campus infec-
tion risk represented by undetected infections using a 
dot plot with one dot for each individual in an organiza-
tion. The expected number of undetected cases is colored 
red; cases detected due to regular asymptomatic testing 
are blue, cases identified from symptom-based testing 
assumed available on-campus are blue gray, and healthy 
individuals are light gray.

The second graphic represents risk reduction using 
a stacked bar chart, with cases detected from regular 
asymptomatic testing represented by blue area and unde-
tected by red. The stacked total is the baseline number of 
undetected cases with no asymptomatic testing.

The last graphic compares the cases detected per 100 
tests in asymptomatic vaccinated and unvaccinated 
individuals. This is shown as a two-column chart; the 
accompanying text displays the relative benefits of test-
ing in the higher-risk category, usually the unvaccinated 
group.

Profiling
The “Profiling” tab presents the same metrics and inputs 
as the scenarios but allows users to customize a chosen 
condition across a range of values and observe the effects 
on each metric. Graphical outputs are simplified to high-
light changes across values. Healthy individuals are not 
included in the absolute risk graphic, which is displayed 
as a stacked area chart. Relative risk reduction is displayed 
as a percentage of total risk, standardizing comparison of 
effects when total case rates change. Cases detected per 
100 tests are displayed as lines, rather than bars.

Results
Design and usage
Users are presented with similar interfaces in both 
main tabs. Outputs are positioned centrally, with inputs 
added to the right (in Scenarios) or bottom (in Profil-
ing). Representation of risk as a dot plot is often associ-
ated with more accurate assessments of risk (3). Exact 
proportions can be shown by hovering over a group. 
Risk reduction is visually represented as a proportion 

of the baseline; the y-axis provides absolute numbers, 
while labels provide relative proportions. Detected 
cases by vaccination status are shown side-by-side and 
provide values by group as well as a multiplicative fac-
tor for the effectiveness of testing in the group with 
higher detection rates. Together, these present the user 
with a top-down narrative highlighting the assessment 
of interest (undetected cases), benefits of the proposed 
solution (risk reduction), and directions for further 
inquiry (vaccination group with the highest benefit 
gained from additional testing). See Fig. 3 for an exam-
ple of the Scenarios UI.

Profiling is presented somewhat differently than indi-
vidual scenarios. Users are only shown one graphic at 
a time to minimize cognitive overhead associated with 
filtering multiple sources of information. The input 
to profile can be chosen through a dropdown menu; 
the chosen input converts from a one-input element 
to a two-input element. The output of interest can be 
selected through a horizontal bar with three output 
options. In addition, users are given a calculate but-
ton that must be clicked to update the graphics; this 
prevents unnecessary profile calculations, which can 
increase latency.

This combination of single-scenario summaries and 
effect profiles allows users to quickly evaluate proposed 
asymptomatic testing strategies for a given context 
and further explore the ramifications of changing the 
assumptions underlying that evaluation. The utility of 
this approach can be seen in a real-world asymptomatic 
testing program assessment.

Case study
St. Jude Children’s Research Hospital (SJCRH) is a 
pediatric hospital focused on advancing the cure and 
prevention of catastrophic pediatric diseases through 
research and treatment with approximately 5,000 
employees. Most patients are either very ill, immuno-
compromised, or both, and thus the acceptable on-
campus risk of COVID-19 transmission is therefore 
very low. SJRCH initiated an asymptomatic employee 
COVID-19 testing program in March 2020, along with 
other on-campus non-pharmaceutical intervention 
measures to minimize the on-campus risk, includ-
ing employee and patient exposure. This program was 
re-evaluated on several occasions as the pandemic 
changed using results from the model presented here. 
Three of these evaluations are mocked to present a 
case study of the usage and real-world utility of covid-
screen; the parameters in these case studies are shown 
in Table 2.
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No vaccination
In March 2020, SJRCH was faced with the need to main-
tain operations after much of the world faced quarantine 
restrictions in the opening phase of the COVID-19 pan-
demic. To minimize the risk of on-campus transmission, 
guidelines such as mask-wearing, physical distancing, 
and minimizing contact between clinical and non-clinical 
areas were instituted. A COVID-19 asymptomatic test-
ing program is significantly more expensive than these 
measures, however, and the benefits of such a program 
were unclear. The primary modeling focus was whether 
testing (including asymptomatic employee PCR-based 
testing) could provide a meaningful level of risk reduc-
tion, and at what community risk level asymptomatic 
testing would be needed to bring on-campus risk down 
to an acceptable level. Using the parameters in the first 
scenario of Table  2, asymptomatic testing was found to 
reduce the number of on-campus undetected cases by 
3.1% with a 30-day asymptomatic testing frequency, 6.7% 
with a 14-day frequency, 13.3% with a 7-day frequency, 
and 31.1% with a 3-day testing frequency. These results 
can be seen in Fig.  4, along with the number of unde-
tected cases expected across a range of case rates, assum-
ing symptomatic individuals were quickly picked up via 
testing and isolation without delay. These testing strate-
gies would require an average of 1,167, 2,500, 5,000, and 
11,667 tests per week. Risk reduction is shown propor-
tional to the number of tests performed using the pro-
posed model.

Vaccination rate w/ vaccines having high efficacy
Roughly one year later, COVID-19 cases had declined 
consistently for some time in the SJCRH region, even 
as the Alpha variant became dominant. SJCRH vaccine 
uptake was high, but all employees were still required 
to undergo regular, asymptomatic testing. The focus of 
modeling shifted to determine whether testing needed 
to be maintained at the same rate for vaccinated versus 
for unvaccinated employees, and to estimate the vaccina-
tion rate at which the testing strategy should be recon-
sidered. Simulation results showed that undetected cases 
decreased rapidly and linearly as the organization vacci-
nation rate increased (Fig. 5). At a daily incidence rate of 
100 cases per 100,000 people, a 75% organization vacci-
nation rate could reduce the number of undetected cases 
from 45 to 15 without testing vaccinated individuals, 

which was lower than the number of undetected cases 
at half that incidence when no vaccination was present 
(see Fig. 4). Testing restricted to the unvaccinated would 
require 1,250 tests per week, compared to 11,667 for 
3-day testing of all employees.

Vaccination rate w/ vaccines having varying efficacy
At the end of 2021, the Omicron variant first emerged 
in South Africa and then rapidly overtook the previ-
ously dominant Delta variant. Omicron appeared to 
evade immune response based on exposure to previ-
ous variants, rendering natural immunity and vaccina-
tion less protective [24]. As incidence rates in the region 
increased, there was a need to investigate the potential 
of added value of resumed asymptomatic testing in fully 
vaccinated employees. Modeling results at transmis-
sion rates showed that the number of undetected cases 
increased as vaccine efficacy decreased in such a highly 
vaccinated organization. Due to a concurrent higher level 
of vaccination than in the surrounding community, simi-
larly, the absolute number of unvaccinated cases detected 
decreased as more vaccinated people were infected, but 
this was still more than offset by the increased number 
of vaccinated cases (Fig.  6). Adding asymptomatic test-
ing of vaccinated screening could only offset a 10 – 20% 
drop in efficacy across a range of possible efficacies. In a 
population of 5,000 employees, this translates as follows: 
If vaccine efficacy was originally 80%, undetected cases 
with weekly unvaccinated asymptomatic screening at an 
incidence of 500 per 100,000 people would be 122. At 
70% effectiveness, testing vaccinated asymptomatic indi-
viduals results in 125 undetected cases, and this number 
increases as vaccine efficacy continues to go down.

Discussion
Institutional policymakers may find the results above 
useful but limited. They are situation-specific to an extent 
but cannot capture every nuance of real life, and they 
require contextual interpretation for action.

In the “No Vaccination” scenario, the benefits of test-
ing rise with test frequency; however, the number of tests 
(and the associated costs) also scale with test frequency. 
An organization might thus adopt a hybrid approach to 
lower costs; for example, clinical staff might be tested 
every 3 days, but non-clinical (lower risk) staff may test 
every 7 days.

Fig. 3  Scenarios UI. Users are guided through risk, benefit, and directions for next steps in the three graphical outputs and accompanying text. The 
dot plot at the top represents absolute risk as undetected cases. The stacked bar chart in the middle represents benefit as risk reduction/detected 
cases. The bar chart at bottom represents effectiveness of testing by vaccination status as percentage of positive tests in each group. Inputs are 
shown at right

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Likewise, in the “High Efficacy Vaccines” scenario, a 
perspective weighing the balance between resources 
spent on testing and benefit gains suggests a compro-
mise; testing asymptomatic, vaccinated individuals may 
add very little benefit for the large costs incurred. These 

results, together with other perceived employee health 
benefits, could support a push towards high organiza-
tional vaccination rates, retaining testing of unvaccinated 
individuals to further mitigate on-campus risk, which 
was exactly one of the hypothetical scenarios presented 

Table 2  SJCRH parameters

The SJCRH testing program is evaluated in three sequential scenarios: original variant w/ no vaccination, alpha variant w/ partial vaccination, and omicron variant w/ 
higher vaccination. Parameters that vary among scenarios are in bold. Some constant parameters differ from the application defaults to match the SJRCH context and 
settings used in the original evaluations. a 0 indicates no screening

Parameter Original +
No Vaccination

Alpha + Vaccination Omicron + Vaccination

Organization Size 5000 people 5000 people 5000 people

Unvaccinated Testing Frequency 0a/3/7/14/30 days 0a/7 days 0a/7 days
Vaccinated Testing Frequency N/A 0a/7 days 0a/7 days
% Organization Vaccinated 0% 0/25/50/75/100% 80%
Daily Cases per 100k 50–500 per 100k 50/100 per 100k 500 per 100k
% Community Vaccinated 0% 30% 60%
Vaccine Efficacy N/A 90% 20/40/60/80%
Test Sensitivity 95% 95% 95%

Test Specificity 100% 100% 100%

% Symptomatic Tested 100% 100% 100%

Symptomatic Period 5 days 5 days 5 days

Pre-Symptomatic Period 5 days 5 days 5 days

% Symptomatic: Unvaccinated Cases 50% 50% 50%

% Symptomatic: Vaccinated Cases 50% 50% 50%

% Symptomatic: Non-Cases 0% 0% 0%

Fig. 4  Undetected asymptomatic cases and their reduction due to screening across testing frequencies, assuming no vaccination. A shows 
undetected asymptomatic cases by test community incidence and organization testing frequency; B shows the percentage of asymptomatic cases 
detected via screening by test frequency. Number of undetected cases is shown for a range of incidence rates; percentages are constant across 
incidence rates and increase more quickly as test frequency increases. Default values were used for other input parameters
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at SJCRH for decision-making. As many healthcare 
organizations, SJCRH promoted its vaccination program 
and yielded a highly vaccinated campus.

Further, in the “Varying-Efficacy Vaccines” scenario, 
asymptomatic testing at acceptable levels simply cannot 

not compensate for decreased vaccine efficacy with high 
COVID-19 transmission. Booster shots could be recom-
mended and incentivized as a likely effective path for risk 
reduction, together with other measures. Note the evolu-
tion of disease severity was not accounted for in the model.

Fig. 5  Undetected asymptomatic cases by organization vaccination rates across testing frequencies, assuming 90% vaccine efficacy. A shows 
undetected asymptomatic cases under low case rates; B shows the same under moderate case rates. Higher vaccination rates are linearly related 
to lower number of undetected cases. Weekly (7 day) unvaccinated testing alone is equal to weekly testing across the entire organization. Default 
values were used for other input parameters

Fig. 6  Detected/undetected asymptomatic cases by vaccine efficacy across testing frequencies, assuming high vaccination and case rates. Low 
vaccine efficacy increases the number of overall cases; weekly screening detects increasing number of vaccinated cases but is insufficient to fully 
control the resulting risk. Default values were used for other input parameters



Page 10 of 11Smith et al. BMC Public Health         (2022) 22:1361 

It should also be always noted that we are not advis-
ing an organization to use asymptomatic testing as a 
stand-alone strategy. Like many other organizations, 
our institution also uses a multi-layered intervention. 
Asymptomatic testing may be made more efficient using 
strategies such as the group testing procedures men-
tioned above. Aside from asymptomatic testing, vaccina-
tion promotion among employees, patients and patients’ 
families, masking, social distancing, and zoning the cam-
pus have been implemented. A smartphone-based daily 
symptom screening among employees has also been 
applied.

Limitations
Though useful as an efficient and intuitive decision-
making tool, covidscreen should be noted as a predictive 
model and cannot guarantee exact forecasts of future 
case rates or risk. Model and UI design focus on captur-
ing macro-scale mechanisms and providing actionable, 
interpretable results. The model evaluates risk in an ideal 
“steady-state” scenario, where incidence and population 
at risk are not dynamic for the evaluation period. This 
assumption should hold safely across short timespans 
but is expected to break down when applied to highly 
dynamic scenarios, as well as to extremely high case rates 
that deplete the population at risk very quickly, although 
such a scenario seems unlikely. Additionally, given that 
asymptomatic testing at the community level is usually 
uncommon, reported public case rates are nearly always 
an underestimate; in fact, the case rates in the above sce-
narios are double the reported community rates for that 
time-period, and a higher multiplier can be possible. As 
a rule, the model takes user-defined parameters at face 
value; this provides transparency but also increases the a 
priori knowledge burden on the user to ensure realistic 
parameters. This limits the practical use of this tool to set-
tings with a high degree of knowledge and expertise in all 
aspects of virology, epidemiology, and testing related to 
an ongoing pandemic. Even in the latter case, results must 
be viewed in the context of potential departure in those 
assumptions, because some simplifying assumptions were 
applied to reduce the number of inputs needed from the 
user, including assumptions regarding test properties and 
the length of pre-symptomatic, infectious and sympto-
matic periods. In particular, the model does not account 
for individual variability in host characteristics (e.g., vac-
cine efficacy) or test properties (e.g., positive tests long 
after a host is no longer transmissible); while this is not 
expected to adversely affect decisions at the population 
level, it may lead to poor outcomes for subsets of individ-
uals with characteristics far from the population average. 
In addition, the tool cannot exhaust all decision-making 

factors into account, including practical testing capac-
ity, population acceptance of proposed intervention, and 
potential or likely evolving disease severity, among other 
issues. Furthermore, formal cost-effectiveness analysis is 
not the aim of the tool, which may hinder the direct appli-
cation to the budgetary process, although the tool does 
offer an assessment of the number of tests required. This 
is a potential area for future contribution or extension.

Conclusions
We developed a user-friendly UI, covidscreen, to assess 
the added value regular, asymptomatic disease testing 
in an organization, for potential on-campus infectious 
diseases risk mitigation. The tool offers an intuitive 
display for an easy comparison of various user-defined 
scenarios, including various testing frequencies or 
strategies, which may be informative in decision-mak-
ing and institutional planning. Formal cost input is not 
included in the UI, however, by showing the benefit 
again by comparing different strategies, including test-
ing vaccinated vs. unvaccinated employees and modi-
fying the program when the vaccine efficacy wanes, 
actionable judgements can be made regarding cost 
versus potential gain. Despite the limitations discussed 
above, the tool can be helpful in providing quick, 
approximate and intuitive output to facilitate early and 
timely decision-making. Another primary advantage of 
this tool is that the idea does not only apply to COVID, 
while it can be readily adapted to epidemic or pandemic 
arising from other viruses without much foreseen diffi-
culty, offering a potential of wide future usage.
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