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Abstract 

Background:  Metabolic syndrome (MetS) is a complex condition that appears as a cluster of metabolic abnor-
malities, and is closely associated with the prevalence of various diseases. Early prediction of the risk of MetS in the 
middle-aged population provides greater benefits for cardiovascular disease-related health outcomes. This study 
aimed to apply the latest machine learning techniques to find the optimal MetS prediction model for the middle-
aged Korean population.

Methods:  We retrieved 20 data types from the Korean Medicine Daejeon Citizen Cohort, a cohort study on a 
community-based population of adults aged 30–55 years. The data included sex, age, anthropometric data, lifestyle-
related data, and blood indicators of 1991 individuals. Participants satisfying two (pre-MetS) or ≥ 3 (MetS) of the five 
NECP-ATP III criteria were included in the MetS group. MetS prediction used nine machine learning models based 
on the following algorithms: Decision tree, Gaussian Naïve Bayes, K-nearest neighbor, eXtreme gradient boosting 
(XGBoost), random forest, logistic regression, support vector machine, multi-layer perceptron, and 1D convolutional 
neural network. All analyses were performed by sequentially inputting the features in three steps according to their 
characteristics. The models’ performances were compared after applying the synthetic minority oversampling tech-
nique (SMOTE) to resolve data imbalance.

Results:  MetS was detected in 33.85% of the subjects. Among the MetS prediction models, the tree-based random 
forest and XGBoost models showed the best performance, which improved with the number of features used. As a 
measure of the models’ performance, the area under the receiver operating characteristic curve (AUC) increased by up 
to 0.091 when the SMOTE was applied, with XGBoost showing the highest AUC of 0.851. Body mass index and waist-
to-hip ratio were identified as the most important features in the MetS prediction models for this population.

Conclusions:  Tree-based machine learning models were useful in identifying MetS with high accuracy in middle-
aged Koreans. Early diagnosis of MetS is important and requires a multidimensional approach that includes self-
administered questionnaire, anthropometric, and biochemical measurements.
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Background
Metabolic syndrome (MetS) is a complex condition that 
appears as a cluster of metabolic abnormalities, including 
obesity, hyperglycemia, hypertension, and dyslipidemia 
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[1]. The global prevalence of MetS is 25–35% and increas-
ing steadily [2–4]. The prevalence of MetS in the US 
increased from 25.3% in 1994–1998 to 34.2% in 2007–
2012 (over 35% increase) [5]. The prevalence among the 
elderly remains high, while it is rapidly increasing among 
young adults [4]. During a similar period, the prevalence 
of MetS in Korea increased from 24.9% in 1998 to 31.3% 
in 2007 (25% increase) [6]. Furthermore, MetS is known 
to be a risk factor for increased morbidity and mortality 
associated with cardiovascular disease (CVD) or can-
cer [7, 8]. Detection before the MetS onset, treatment, 
and prevention are essential. For middle-aged individu-
als with no particular health issues, detecting the risk 
of MetS and active and healthy lifestyle intervention 
offer greater benefits for CVD-related health outcomes 
[9]. Change in systolic blood pressure, a major indica-
tor of MetS, showed a strong association with CVD and 
all-cause deaths within the first 10 years of follow-up in 
males aged 40–59 years, weakening thereafter [10]. This 
highlights the importance of early detection of changes in 
the MetS components to facilitate early prediction of the 
disease in the middle-aged population.

Data mining, such as machine learning techniques, 
plays an important role in understanding the non-linear 
and complex relationships between various factors by 
extracting useful information that could help decision-
making based on big data [11, 12]. In the medical field, 
machine learning techniques could analyze expansive 
clinical, imaging, and genomic data to improve the diag-
nostic and classification accuracy of diseases while pre-
senting a new paradigm in treatment [13]. A previous 
study attempted to predict the onset of diabetes using 
data on risk factors of MetS collected over 10 years from 
660,000 subjects [14]. In that study, Naïve Bayes and 
J48 decision tree decision-making models and various 
machine learning techniques were shown to be optimal 
for predicting diabetes. The effect of various sampling 
techniques was also verified. Moreover, a recent study 
attempted to use machine learning based on various clin-
ical features to predict MetS [15, 16]. A MetS prediction 
model for a working population using an artificial neu-
ral network was highly efficient, with an accuracy of 89%, 
higher than logistic regression analysis, the traditional 
prediction modeling technique [16]. Moreover, in a study 
that used the Naïve Bayes model to predict MetS based 
on clinical and genetic data of a normal-weight popula-
tion, the area under the receiver operating characteristic 
curve (AUC) increased by 4% when genetic feature com-
posed of single nucleotide polymorphism was added to 
the baseline clinical feature such as gender and age, indi-
cating the importance of feature selection [15].

In a systematic review that analyzed 22 reports on 
MetS prediction in the Korean population during the 

past 10 years [17], the study population in most con-
sisted of all age groups, including the elderly, rather than 
any specific age group population. The most used MetS 
diagnostic criteria were those in the National Cholesterol 
Education Program-Adult Treatment Panel III (NCEP-
ATP III) guidelines. Moreover, 64% of the studies used 
logistic regression analysis to predict MetS. One study 
used five machine learning MetS prediction models, with 
eXtreme gradient boosting (XGBoost) (AUC = 0.879) 
showing the best performance [18]. There are almost no 
studies on MetS machine learning prediction based on 
various clinical features in middle-aged Koreans.

The objective of the present study was to construct 
an optimal MetS prediction model by applying machine 
learning techniques to data pertaining to middle-aged 
Koreans. This study also performed MetS prediction 
modeling by including pre-MetS (at least two compo-
nents of the MetS diagnostic criteria) for preventive 
healthcare of the study population. We assessed the con-
tribution degree of the various clinical feature types and 
examined the model performance changes after applying 
data sampling to minimize data imbalance.

Methods
Study design and participants
This study used data from the community-based Korean 
Medicine Daejeon Citizen Cohort (KDCC) study cur-
rently undergoing in Korea [19]. The KDCC study 
includes 30–55 years old residents of Daejeon, excluding 
individuals diagnosed with cancer or CVD (myocardial 
infarction, angina, stroke/apoplexy). The study com-
pleted a population-based survey of 2000 participants 
between 2017 and 2019 to collect demographic, lifestyle-
related, individual characteristics of Korean medicine 
(KM), clinical, and biochemical measurements data. The 
questionnaire survey was conducted as a face-to-face 
interview by well-trained interviewers. The participants 
height, weight, waist circumference, and hip circumfer-
ence were measured. Samples for blood tests, collected 
after 12 h of fasting, were sent for testing to an authorized 
diagnostic laboratory (Seoul Clinical Laboratories, Seoul, 
Korea). This study analyzed the KDCC data of 1991 indi-
viduals after excluding nine with missing values.

The KDCC study was approved by the Institutional 
Review Board, and informed consent forms were 
obtained from the participants after providing an expla-
nation about their participation in the study.

Measures
With reference to previous studies, the 20 features used 
in the MetS prediction models were examined [17] and 
added sequentially in three steps [15, 16] taking into 
account their characteristics and methods of collection: 
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demographic and anthropometric data that could be 
self-reported or were already known were added in step 
1; lifestyle-related factors that could be measured using 
questionnaires were added in step 2; and blood indicators 
were added in step 3. The variables used in this study are 
well known risk factors for metabolic syndrome in the 
clinical setting. In addition, these variables are important 
modifiable factors through clinical attention and indi-
vidual intervention and awareness for the prediction and 
management of metabolic syndrome [1].

Demographic and body measurements (Step 1)
The first group of features consisted of sex, age, body 
mass index (BMI), and waist-to-hip ratio (WHR). BMI 
was calculated by dividing the measured weight (kg) by 
the squared height (m2), while WHR was calculated by 
dividing the average waist circumference by the average 
hip circumference after performing two measurements 
for each with a measuring tape (Rollfix, Hoechstmass, 
Germany).

Lifestyle‑related factors (Step 2)
The second group of features consisted of lifestyle-
related factors, including drinking status, smoking sta-
tus, physical activity [20], sleep time and quality [21], 
eating index [22], stress [23], and symptom-based KM 
types used [24]. All eight features were investigated using 
a structured questionnaire. The following questions were 
asked for smoking status: “Have you smoked more than 
100 cigarettes in your lifetime?” and “Do you currently 
smoke?” Based on the responses, the smoking status of 
the participants was classified as “current smoker,” “for-
mer smoker,” and “non-smoker.” Drinking status was 
classified as “current drinker,” “former drinker,” and 
“non-drinker” based on similar questions about drink-
ing. Physical activity (PA) was assessed using the Korean 
Global Physical Activity Questionnaire developed by the 
World Health Organization [20]. PA was calculated and 
later converted to Metabolic equivalent of task (METs). 
The sleeping time and quality over the past month were 
assessed using the Korean version of the Pittsburgh 
Sleep Quality Index [25]. Eating index was measured 
using a semi-quantitative food frequency questionnaire 
consisting of 34 food groups, which collects data on 
the frequency (nine option ranging from rarely eaten to 
three times a day) and average intake (three or four spec-
ified portion sizes) of each food item over the past year 
[19]. Eating index was composed of 9 adequacy compo-
nents and 5 moderate components, and the total score 
ranged from 0 to 100 following the previously-reported 
calculation method of the Korean Healthy Eating Index 
[26]. The stress index was calculated using the 18-item 
Psychosocial Well-being Index-Short Form [27]. The 

KM types were defined as Sasang constitution and were 
determined by the simplified and structured question-
naire comprised one physical characteristic, six person-
ality traits, and eight physiological symptoms [24]. The 
KM types were classified into Taeumin, Soeumin, or 
Soyangin because users of these types vary in their phys-
iological and psychological states, disease susceptibility, 
and lifestyle healthcare approach [28].

Biochemical measurements (Step 3)
The third group of features consisted of eight blood test 
features, including aspartate transaminase (AST), alanine 
transaminase (ALT), and alkaline phosphatase (ALP) for 
liver function [29]; high-sensitivity C-reactive protein 
(hsCRP) [30]; hemoglobin A1c (HbA1c) [31]; insulin; 
gamma-glutamyl transferase (GGT); and homeostatic 
model assessment for insulin resistance (HOMA-IR) 
[32]. Blood samples were collected from a peripheral 
vein in the morning, following overnight fasting, and 
then centrifuged at 3450 rpm for 10 min. Blood samples 
were examined using automatic clinical chemistry ana-
lyzers (ADVIA1800, Siemens, USA) for AST, ALT, ALP, 
hsCRP, and GGT, also including glucose, triglyceride, and 
high-density lipoprotein-cholesterol as diagnostic indica-
tors of Mets. HbA1c and insulin levels were determined 
using an automated analyzer (Variant II trubo, BIORAD, 
USA and ADIVA Centaur, Siemens, USA, respectively). 
HOMA-IR was calculated as glucose (mg/dL) × insulin 
level (mIU/L)/405.

Definition of the metabolic syndrome
The Mets group in present study was defined as meet-
ing at least two criteria including both pre-MetS and 
Mets status, because of the importance of preventive 
healthcare by early detection of MetS in the middle-aged 
population [33]. MetS group was diagnosed by the fol-
lowing five criteria given in the NCEP-ATP III guidelines 
[1]: 1) a waist circumference above the cut-off point for 
Koreans (≥90 cm for males and ≥ 85 cm for females); 2) 
systolic blood pressure ≥ 130 mmHg, diastolic blood 
pressure ≥ 85 mmHg, or taking medication for hyper-
tension; 3) a triglyceride level of ≥150 mg/dL or taking 
medication for such lipid abnormalities; 4) low high-den-
sity lipoprotein-cholesterol level (< 40 mg/dL for males 
and < 50 mg/dL for females) or taking medication for such 
lipid abnormalities; 5) a fasting plasma glucose level of 
≥100 mg/dL or taking medication for type 2 diabetes.

Analysis
Data are expressed as mean and standard deviation, and 
frequency and percentage. General characteristics of the 
participants between the normal and the Mets groups 
were compared by the Fisher’s exact test or chi-square 
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test for categorical variables and by independent t-tests 
for continuous variables. The performance of the MetS 
prediction models was compared by sequentially input-
ting the 20 features identified as key indicators on MetS 
in three steps and examining their influence. A list and 
scale of features by stage are as follows. In step 1, sex as 
categorical variable, and age, BMI, and WHR as continu-
ous variables were inputted. In step 2, drinking, smoking, 
KM types as categorical variables, and physical activ-
ity, sleep time, sleep quality, eating index, and stress as 
continuous variables were additionally inputted. In step 
3, AST, ALT, ALP, hsCRP, HbA1c, insulin, GGT, and 
HOMA-IR as continuous variables were additionally 
inputted.

A supervised machine learning model was used for 
MetS prediction. The algorithms used to develop the 
model were decision tree, Gaussian Naïve Bayes (NB), 
K-nearest neighbor (KNN) [34], XGBoost, random for-
est (RF), logistic regression [15, 18, 35], support vec-
tor machine (SVM), multi-layer perceptron (MLP) [16], 
and 1-dimensional convolutional neural network (1D-
CNN) [36]. Min-max normalization was applied to the 
data used in the analysis [37]. The model was built using 
6-fold classified training data and test data. The ratio of 
the number of training and test datasets was 5:1. Of the 
1991 datasets, 1659 and 332 datasets were used for train-
ing dataset, and test dataset, respectively. In addition, 
the 2:1 ratio of the normal group and the Mets group 
was configured to remain the same for the training and 
the test datasets. Moreover, we performed oversampling 
using the synthetic minority oversampling technique 
(SMOTE) to deal with data imbalance [13, 38, 39]. The 
SMOTE generates randomly synthesized data for the 
minority class using the Euclidean distance-based near-
est neighbor approach. The synthesized and existing data 
had similar characteristics as the generation of the syn-
thesized data was based on existing data. We compared 
the performances before and after the SMOTE applica-
tion. Lastly, RF [18, 40] investigated the importance of 
features influencing the MetS. This is because the per-
formance of the RF model consistently showed the best 
overall performance in all three stages.

The performance of the MetS prediction models was 
measured using F1-score, accuracy, sensitivity, specific-
ity, and the AUC, along with 95% confidence interval. 
F1-score is the harmonic mean of precision and recall, 
and the calculation formula is as follows: F1-score = 2 
/ {(1/Precision) + (1/Recall)}, Precision = True Posi-
tive / (True Positive + False Positive), and Recall = True 
Positive / (True Positive + False Negative). Scikit-learn 
library in Python ver. 3.8.5 (Python Software Foundation, 
https://​www.​python.​org/​psf/) was used. For analysis and 
comparison, a model was built using default parameters.

Results
General characteristics
The characteristics of the 1991 participants (30.5% 
males and 69.5% females) are detailed in Table  1. Of 
these, 1317 were considered normal group, and 674 
were considered to have Mets group. The differences in 
the characteristics of the variables between the normal 
and the Mets groups are shown in Table 1. There were 
significant differences in all variables except for age of 
45 years or younger, physical activity, sleep time, sleep 
quality, eating index, and stress (Table 1).

Comparison of the machine learning models 
without the synthetic minority oversampling technique
When sex, age, BMI, and WHR were used in the nine 
MetS prediction models before applying SMOTE, the 
Gaussian NB model showed the highest AUC (range 
for all models, 0.677–0.764), sensitivity (range for all 
models, 0.558–0.684), and F1-score (range for all mod-
els, 0.711–0.789). When MetS was predicted with the 
addition of the 8 lifestyle-related features to the 4 fea-
tures, the models had an AUC range of 0.686–0.756, 
sensitivity range of 0.551–0.685, and F1-score range 
of 0.722–0.791. The RF model showed the best per-
formance in the AUC and F1 score. When all 20 fea-
tures were used to predict MetS, the models had an 
AUC range of 0.703–0.786 and an F1-score range of 
0.743–0.815, with the RF model showing the best per-
formance based on AUC (0.786) and sensitivity (0.690). 
Some models, particularly the tree-based models, such 
as XGBoost and RF, tended to show improved per-
formance with the increase in the number of features 
(Table 2).

Performances with the synthetic minority oversampling 
technique
Due to imbalance between the MetS group and nor-
mal group, the performance of the models was assessed 
before and after applying the SMOTE. When the MetS 
models were constructed with four features and the 
SMOTE was applied, the RF model showed an excel-
lent performance with an AUC of 0.814, F1-score 
of 0.813, and sensitivity of 0.832. The RF model still 
showed the best performance, with 0.838 for both the 
AUC and F1-score, when 12 features were used. When 
all 20 features were used, the XGBoost model showed 
the best performance, with 0.851 for both AUC and 
F1-score. The overall performance of the MetS predic-
tion models improved after applying the SMOTE, with 
the full XGBoost model showing the best performance 
(Table 2).

https://www.python.org/psf/
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Key factors in predicting metabolic syndrome
Figure  1 shows how each feature influences the pre-
diction of MetS. The key features in models using 12 

features were BMI and WHR, with importance of 26 
and 22%, respectively (Fig.  1a). Other lifestyle-related 
features showed relatively weak influence. Despite 

Table 1  General participant characteristics

MetS Metabolic syndrome, BMI Body mass index, WHR Waist-to-hip ratio, KM type Korean medicine type, PA Physical activity, METs Metabolic equivalent of task, AST 
Aspartate transaminase, ALT Alanine transaminase, ALP Alkaline phosphatase, hsCRP High sensitivity C-reactive protein, HbAlc Hemoglobin A1c, GGT​ Gamma-glutamyl 
transferase, HOMA-IR Homeostatic model assessment for insulin resistance, HDL-C High-density lipoprotein-cholesterol, BP Blood pressure

Values are presented as n (%) or mean ± standard deviation
† P-values for continuous are based on independent t-tests; all other P-values for categorical variables are based on Fisher’s exact test or chi-square test between the 
normal and Mets groups

Total Normal group MetS group p-value

Sex 1991 (100) 1317 (66.1) 674 (33.9)

  Male 608 (30.5) 297 (48.8) 311 (51.2) < 0.001

  Female 1383 (69.5) 1020 (73.8) 363 (26.2)

Age (years) 43.81 ± 6.86 43.12 ± 6.83 45.17 ± 6.73 < 0.001

  30–44 1006 (50.5) 728 (72.4) 278 (27.6) 0.373

  45–55 985 (49.5) 589 (59.8) 396 (40.2) 0.003

BMI (kg/m2) 24.34 ± 3.62 22.96 ± 2.79 27.05 ± 3.53 < 0.001

WHR 0.86 ± 0.06 0.84 ± 0.05 0.90 ± 0.05 < 0.001

Alcohol status

  non-drinker 716 (100) 500 (69.8) 216 (30.2) 0.007

  former drinker 76 (100) 52 (68.4) 24 (31.6)

  current drinker 1199 (100) 765 (63.8) 434 (36.2)

Smoking status

  non-smoker 1585 (100) 1122 (70.8) 463 (29.2) < 0.001

  former smoker 162 (100) 75 (46.3) 87 (53.7)

  current smoker 244 (100) 120 (49.8) 124 (50.8)

KM type

  Taeumin 1012 (100) 492 (48.6) 520 (51.4) < 0.001

  Soeumin 397 (100) 351 (88.4) 46 (11.6)

  Soyangin 582 (100) 474 (81.4) 108 (18.6)

PA (METs) 2538 ± 3798.53 2606.85 ± 39,258.16 2405.60 ± 3527.73 0.264

Sleep time (h) 6.71 ± 1.06 6.74 ± 1.04 6.66 ± 1.09 0.139

Sleep quality 4.69 ± 2.86 4.69 ± 2.81 4.68 ± 2.97 0.959

Eating index 51.42 ± 10.50 51.72 ± 10.46 50.82 ± 10.53 0.069

Stress 17.65 ± 7.07 17.60 ± 7.26 17.75 ± 6.69 0.657

AST (U/L) 24.89 ± 12.14 23.53 ± 10.06 27.55 ± 15.07 < 0.001

ALT (U/L) 23.97 ± 19.81 20.19 ± 14.78 31.35 ± 25.48 < 0.001

ALP (U/L) 63.70 ± 18.68 60.66 ± 17.68 69.62 ± 19.15 < 0.001

hsCRP (mg/L) 1.25 ± 2.76 1.00 ± 2.69 1.73 ± 2.85 < 0.001

HbA1c (%) 5.48 ± 0.60 5.35 ± 0.31 5.75 ± 0.87 < 0.001

Insulin (mIU/L) 6.10 ± 4.34 4.90 ± 2.90 8.45 ± 5.56 < 0.001

GGT (U/L) 30.18 ± 38.20 22.64 ± 27.18 44.92 ± 50.40 < 0.001

HOMA-IR 1.30 ± 1.14 0.99 ± 0.64 1.94 ± 1.57 < 0.001

Mets components

  Waist circumference (cm) 82.72 ± 9.67 78.92 ± 7.71 90.13 ± 8.76 < 0.001

  Triglyceride (mg/dL) 132.31 ± 124.14 95.05 ± 50.38 205.12 ± 180.42 < 0.001

  HDL-C (mg/dL) 56.87 ± 13.89 61.54 ± 12.97 47.74 ± 10.72 < 0.001

  Systolic BP (mmHg) 116.97 ± 15.34 112.10 ± 12.47 126.49 ± 15.95 < 0.001

  Diastolic BP (mmHg) 73.52 ± 12.08 69.75 ± 9.95 80.88 ± 12.48 < 0.001

  Glucose (mg/dL) 84.16 ± 16.20 80.59 ± 8.00 91.14 ± 24.01 < 0.001
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adding the blood test features, BMI and WHR were still 
the key features in the models using 20 features, with 
importance of 15 and 13%, respectively (Fig. 1b). More-
over, the influence of the blood test features seemed 
higher than the lifestyle-related features. The numeri-
cal decreased in the influence of BMI and WHR was 
due to the increase in the number of features, but these 
two features were identified as key features in model 
construction.

Discussion
The present study applied various machine learning and 
deep learning techniques to construct MetS predic-
tion models for middle-aged Koreans and verified the 
performance of the models by changing the number of 
features (4, 12, and 20) used to construct them. In this 
process, sex and age were used as the basic features, and 

the number of features was increased by first including 
easily measurable anthropometric data, followed by life-
style-related features obtained through a questionnaire, 
and lastly, blood test results measured in an invasive 
method. The results confirmed that the models’ per-
formance improved with the increase in the number of 
features used and showed the highest scores with 20 fea-
tures. Among the various models, the RF and XGBoost 
models showed excellent performances, confirming the 
importance of BMI and WHR as key features. Moreo-
ver, the study demonstrated that data imbalance could 
be corrected by performing data augmentation with the 
SMOTE.

The Gaussian NB model showed excellent perfor-
mance in predicting MetS using sex and anthropomet-
ric data (BMI and WHR), while the RF model showed 
excellent performance in the AUC and F1-score when 

Fig. 1  Feature importance in the MetS prediction model. a Feature importance when using 12 features; (b) Feature importance when using 20 
features. Variable importance results when building the model are presented. BMI, body mass index; WHR, waist-to-hip ratio; PA, physical activity; KM 
type, Korean medicine type; HOMA-IR, homeostatic model assessment for insulin resistance; GGT, gamma-glutamyl transferase; HbAlc, hemoglobin 
A1c; hsCRP, high sensitivity C-reactive protein; ALT, alanine transaminase; ALP, alkaline phosphatase; AST, aspartate transaminase
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the lifestyle-related features were included. MetS predic-
tion based on all 20 features without the SMOTE showed 
moderate. Similar performance results were reported in 
previous studies [35, 41]. Moreover, in a study that meas-
ured lifestyle factors such as smoking status, physical 
activity, sleep time, shift work, and work-related stress 
in an Iranian working population to predict MetS using 
an artificial neural network, the results showed high pre-
dictive power with 89% accuracy, 82.5% sensitivity, and 
92.2% specificity, significantly better than the traditional 
logistic regression analysis prediction model [16]. Fur-
thermore, the study stressed the importance of lifestyle 
factors, such as work-related stress and sleep apnea, in 
addition to clinical blood markers, for achieving accurate 
prediction of the MetS status. Moreover, a study on MetS 
prediction among Koreans with normal weight showed a 
sensitivity of 0.38–0.42 and an accuracy of 0.71–0.82. The 
AUC value improved from 0.65 to 0.69 when a Gauss-
ian NB model was applied and genetic data were added 
to demographic, lifestyle, and clinical data [15]. Such dif-
ferences in performance between studies are believed 
to be attributable to differences in the study population, 
whether only basic clinical data were used when con-
structing the machine learning models, and differences in 
the use of genetic or blood test data.

The BMI and WHR proved the most important key fea-
tures contributing to the MetS model predictive accuracy. 
In a study on MetS prediction using the Isfahan Cohort 
Study data of 2107 participants [41], SVM and decision 
tree-based prediction models were constructed based on 
various health features, showing sensitivities of 0.774 and 
0.758, respectively. The study mentioned that the BMI 
acted as a key feature. Another study using data of 468 
participants from the same cohort found that features 
such as BMI and WHR were useful indicators of MetS 
among females [42]. Anthropometric indicators such as 
BMI and WHR could be easily measured in daily life. Pre-
vious studies reported that anthropometric changes in 
the middle-aged population were a major contributor to 
MetS prediction, consistent with the findings in the pre-
sent study. Besides, the present study also examined the 
influence of lifestyle factors such as eating index, physical 
activity, sleep time, smoking status, and drinking status 
[43] as modifiable factors for chronic CVD and KM type, 
known independent risk factors of MetS [44]. Although, 
as symptom-based KM type, their contribution to MetS 
prediction was weak in this study, MetS prediction after 
adding the lifestyle features showed an adequate level of 
accuracy. This approach could help identify the risk of 
MetS through self-diagnosis, so daily life interventional 
management of MetS could be customized.

Our study also confirmed performance improvement 
by applying the SMOTE to resolve the data imbalance 

problem that often occurs when using medical data. A 
study that used medical data to predict diabetes over-
came data imbalance through oversampling with the 
SMOTE, increasing the sensitivity of probabilistic neural 
network (from 0.027 to 0.667), decision tree (from 0.215 
to 0.726), and Gaussian NB (from 0.721 to 0.776) [38]. In 
a study that applied the SMOTE to predict heart disease, 
the extra tree classifier algorithm accuracy improved 
from 0.833 to 0.926 after the SMOTE was applied [13]. 
XGBoost performance in our study improved after apply-
ing the SMOTE, with sensitivity increasing from 0.662 
to 0.859 and accuracy from 0.804 to 0.851 in a model 
constructed using all 20 features. Moreover, the sen-
sitivity was low, and specificity was high before apply-
ing SMOTE. This change was because there were fewer 
participants in the MetS group than the normal group. 
However, the specificity decreased slightly and the sensi-
tivity markedly improved when the SMOTE was applied 
to resolve the data imbalance between the two groups. 
Considering the characteristics of medical data that fre-
quently show imbalance between groups, the SMOTE for 
data oversampling could be effective for developing diag-
nostic approaches, such as MetS prediction.

The present study verified the performance of vari-
ous machine learning techniques for predicting MetS in 
middle-aged Koreans, demonstrating that the predic-
tion performance could be improved by data augmen-
tation and increasing the number of features. However, 
there is potential for further model development due 
to several limitations. A previous study showed that 
performance of models constructed to include genetic 
data was better than those based on clinical data alone 
[15]. Therefore, improved performance of our mod-
els could be expected by adding genetic data. Moreo-
ver, while tree-based machine learning models, such 
as RF and XGBoost, showed excellent performance, 
the simple 1D-CNN-based deep learning model also 
performed better than basic statistical analysis meth-
ods such as logistic regression or some other machine 
learning models. Since the present study used a simple 
deep learning structure, better performance may be 
expected by applying more advanced deep learning net-
work techniques to the clinical data. The risk factors of 
MetS analyzed in this study used cross-sectional data; 
however, cross-sectional data are limited as they do not 
allow accurate analysis of causal relationship between 
the disease onset and its risk factors. Because the sam-
ple size in this study is small, this model may be less 
accurate with a larger sample. In order to avoid opti-
mally biased performance estimates in machine learn-
ing analysis, it is important to separate training data 
and test data or to have a sufficient number of samples 
[45]. Considering this, further studies using large-scale 
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data are needed. Finally, the MetS group in present 
study included pre-MetS status, satisfying at least two 
criteria, taking into account the low prevalence of MetS 
in the study participants. However, the present study 
was the first to investigate the effect of increasing the 
number of used features by machine learning tech-
niques to predict MetS. The machine learning-based 
models showed good performance in predicting MetS, 
particularly the tree-based RF and XGBoost models.

Despite these limitations, the present study could help 
the middle-aged population lower the risk of aging-
related chronic diseases such as MetS through routine 
healthcare and assessment of easily modifiable lifestyle 
factors. Moreover, a strength of the study was its multi-
faceted MetS management models that compared the 
performance through stepwise inclusion of daily life pre-
diction factors such as weight, lifestyle, and data from 
medical institutions such as blood test results.

Conclusions
The present study used anthropometric, lifestyle, and 
blood test features to compare the performance of MetS 
prediction models in middle-aged Koreans. Among these 
MetS prediction models, the tree-based machine learn-
ing ones showed high accuracy in identifying participants 
with MetS. The models’ performance improved when 
the number of features was increased, and the SMOTE 
was applied. The anthropometric features BMI and WHR 
were identified as more important features for MetS pre-
diction in this middle-aged population than lifestyle or 
blood test features. Early diagnosis of MetS is important, 
requiring a multidimensional approach that includes self-
administered questionnaire, anthropometric, and bio-
chemical measurements.
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