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Abstract 

Background:  Stunting remains a significant public health issue in Rwanda and its prevalence exhibits considerable 
geographical variation. We apply Bayesian geostatistical modelling to study the spatial pattern of stunting in children 
less than five years considering anthropometric, socioeconomic and demographic risk factors in Rwanda. In addi-
tion, we predict the spatial residuals effects to quantify the burden of stunting not accounted for by our geostatistical 
model.

Methods:  We used the data from the 2015 Rwanda Demographic and Health Survey. We fitted two spatial logistic 
models with similar structures, only differentiated by the inclusion or exclusion of spatially structured random effects.

Results:  The risk factors of stunting identified in the geostatistical model were being male (OR = 1.32, 95% CI: 1.16, 
1.47), lower birthweight (kg) (OR = 0.96, 95% CI: 0.95, 0.97), non-exclusive breastfeeding (OR = 1.24, 95% CI: 1.04, 1.45), 
occurrence of diarrhoea in the last two weeks (OR = 1.18, 95% CI: 1.02, 1.37), a lower proportion of mothers with over-
weight (BMI ≥ 25) (OR = 0.82, 95% CI: 0.71, 0.95), a higher proportion of mothers with no or only primary education 
(OR = 1.14, 95% CI: 0.99, 1.36). Also, a higher probability of living in a house with poor flooring material (OR = 1.22, 95% 
CI: 1.06, 1.41), reliance on a non-improved water source (OR = 1.13, 95% CI: 1.00, 1.27), and a low wealth index were 
identified as risk factors of stunting. Mapping of the spatial residuals effects showed that, in particular, the Northern 
and Western regions, followed by the Southern region of Rwanda, still exhibit a higher risk of stunting even after 
accounting for all the covariates in the spatial model.

Conclusions:  Further studies are needed to identify the still unknown spatially explicit factors associated with higher 
risk of stunting. Finally, given the spatial heterogeneity of stunting, interventions to reduce stunting should be geo-
graphically targeted.
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Background
Stunting still is a major public health issue in develop-
ing countries. Stunting is an indicator of chronic mal-
nutrition in children less than five years. It is defined as 
height-for-age that is less than two standard deviations 

of the World Health Organisation (WHO) child growth 
standards median [1]. It is the most prevalent form of 
malnutrition in the world, with globally 149 million chil-
dren under five stunted [2]. The growth retardation starts 
during pregnancy and continues until a child is two years 
of age [3]. Stunting develops from poor maternal health 
and nutrition, inadequate infant feeding practices, and 
recurrent and subclinical infections [1]. Stunting is a mul-
tifactorial and complex health problem [4] and its direct 
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causes are embedded in the complexity of household, 
societal, and community factors [5]. The consequences of 
stunting are felt not only in childhood but also in adult-
hood. In children, stunting results in decreased motor 
and cognitive development, impaired immunity, and low 
education attainment [6]. In adulthood, it leads to lower 
economic productivity, increases the risk of chronic dis-
eases, and lowers offspring birth weight [6, 7].

Reducing stunting in children under five years of age is 
among the targets of the Sustainable Development Goals 
2 [8]. The aim of Goal 2 is to end all forms of malnutri-
tion by 2030, and by 2025 achieve a 40% reduction in the 
global prevalence of stunting as set by the World Health 
Assembly [1]. On a global and regional scale, stunting 
prevalence varies spatially and temporally. The map-
ping of child growth failure in Africa [9] showed that, 
although stunting has reduced overall, there are per-
sistent heterogeneities in levels and trends in stunting 
across the African continent. Also, effective targeting of 
interventions to the most vulnerable has been identified 
as one of the drawbacks in achieving desired targets in 
stunting reduction. [9] estimated that if interventions and 
programmes to reduce stunting are not spatially targeted 
and monitored, there will likely be no African country 
that will achieve the global nutrition targets in all of its 
sub-national territories. National stunting prevalence 
can show improvement, while stunting levels at the local 
level remain high. In other words, national-level preva-
lence estimates can mask disparities and inequalities that 
exist between regions [9]. This is problematic because it 
is the aggregated prevalence level that is usually used to 
direct locally implemented interventions and programs 
for stunting alleviation. Thus, scarce health resources 
may not be well targeted to the most vulnerable. Also, 
most studies on the modelling of stunting and identifica-
tion of its risk factors do not take into account the spatial 
dependency that exists in the data. Thus, to achieve the 
set target to reduce stunting, the spatial heterogeneity in 
stunting prevalence calls for a more in-depth assessment 
of the drivers of stunting on a local level. Moreover, spa-
tially targeted interventions and programs are required 
for the most vulnerable communities to benefit from 
them.

In Rwanda, stunting reduction has been made a pri-
ority and this resulted in the national prevalence lev-
els being on the decline in past years. However, with a 
prevalence of 38% [10], the stunting levels in the coun-
try are considered very high according to thresholds of 
the World Health Organization (WHO) [11]. Also, the 
disparity in stunting levels at the sub-national level is 
very apparent, with levels that vary from 59% in some 
districts to 17% in others [10]. Spatial heterogeneity 
might be even more pronounced at finer geographical 

scales. Thus, in this study, we apply Bayesian geostatis-
tical methods to model the spatial patterns of stunting 
in Rwanda. The model is finally used to make fine scale 
predictions on 5 × 5 km grid. The use of Bayesian estima-
tion has an important advantage compared to classical 
statistical modelling approaches due to its capabilities to 
incorporate prior knowledge about unknown spatial and 
non-spatial parameters to be estimated. Previous geo-
statistical analyses done on stunting in Rwanda focused 
on predicting stunting on a national level using geospa-
tial covariates that are correlated with stunting [9, 12], 
but did not include child-related factors. Not including 
child-related covariates in the geostatistical model was 
signalled as a limitation in these studies. In this study, 
the aim is to specify a Bayesian geostatistical model using 
child-related covariates to model stunting and study its 
risk factors in Rwanda. Also, we aimed to predict the spa-
tial residuals effects to quantify the burden of stunting 
not accounted for by the specified geostatistical model. 
The findings of this study are expected to contribute to 
understanding the spatial heterogeneity of stunting in 
Rwanda, the risk factors that underline it and will provide 
new insights into the persistently high levels of stunting 
in some regions.

Methods
Study area
Rwanda is located in East African between 1° 04’ and 2° 
51’ latitude South, and 28° 50’ and 30° 50’ longitude East. 
The country’s surface area is 26.338 km2 and is bordered 
by Uganda in the North, Tanzania in the East, Congo 
in the West, and Burundi in the South. The country’s 
topography is made up of hills and valleys with the high-
est point in the country being at 4500 m and the lowest 
at 980  m. The country is divided into 30 administrative 
units called districts. The stunting pattern in the country 
varies spatially with the Western province, located on the 
Congo Nile trail, being among the most affected, while 
the central region including Kigali has the least stunting 
prevalence (Fig. 1).

Data description
This study was based on the data from the 2015 Rwanda 
Demographic and Health Survey [10]. In the first stage, 
clusters within enumeration areas that represent the 30 
districts of Rwanda were selected. Clusters are the pri-
mary sampling units and they contain on average 100 
and 300 households from which 20 to 30 households are 
randomly selected for survey participation. In Rwanda, 
a total of 492 clusters were selected, 113 were located in 
urban areas, and 379 were located in rural areas. The sec-
ond stage involved the systematic sampling of 26 house-
holds within each cluster, making up a sample of 12,792 
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households on the national level. From a sub-sample con-
sisting of 50% of the households, indices of anthropomet-
ric status (child height and weight), individual mother, 
and household characteristics were recorded for 3,813 
children less than five years. The sample size of children 
less than five years with valid anthropometric data was 
3,593 and this study is based on this sample.

Child‑related factors
The Demographic and Health Survey (DHS) data used 
in this study consisted of anthropometric, demographic, 
nutritional, and socioeconomic data. The dependent 
variable was the stunting status of children less than five 
years, recorded as a dichotomous variable. The explana-
tory variables were age of the child, birth weight, gender, 
preceding birth interval, exclusive breastfeeding in the 
previous six months, use of drugs for intestinal parasites, 
mothers’ highest education level, and mothers’ BMI. 
Exclusive breastfeeding and minimum dietary diver-
sity were only measured for children less than two years 
[10]. The socio-economic variables included the source 
of drinking water of the household, type of sanitation 

facility, type of cooking fuels, wealth index, and type of 
residence. These variables were considered because of 
their known relation with stunting [5, 13].

Statistical analysis
Descriptive statistics were conducted using SPSS version 
24. Stunting was coded as 0 for non-stunting and 1 for 
stunting. For the categorical explanatory variables, the 
value with the least risk of stunting was set as the refer-
ence value [14]. Correlation between variables was run to 
check for multicollinearity with r > 0.7 . All variables had 
r < 0.7 , indicating that multicollinearity did not occur 
[15]. By taking into account the complex sample design 
of the DHS survey data, crosstab analysis was conducted 
on categorical variables with stunting as the dependent 
variable. For the continuous variables, univariate logis-
tic regression was run to study the association of the 
variables with stunting. Unadjusted odds ratios were 
reported for both categorical and continuous variables 
and a p-value of < 0.05 was adopted to indicate statistical 
significance.

Fig. 1   Stunting prevalence per district in Rwanda in 2015 (Source: DHS, 2015). Map created using ArcGIS Desktop version 10.6, licensed (https://​
www.​esri.​com/)

https://www.esri.com/
https://www.esri.com/
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For spatial analysis, we conducted the analysis at the indi-
vidual level, by taking into account the spatial location of 
household clusters. We fitted a binary logistic model to 
the Bernoulli outcomes yij defining yij = 1 if the child i is 
stunted and yij = 0 if the child is non-stunted within the 
jth cluster, j = 1, . . . , J clusters. The logistic regression 
model with the expected probability of becoming stunted 
being p is thus,

yij ∼ Bern
(

pij
)

where β0 is the intercept, β1 . . . .,βQ and γ1 . . . ., γl are 
the unknown regression coefficients; Xiq is a set of con-
tinuous covariates (e.g. age, birth weight. See Table  1) 
and Zil is a set of categorical covariates (e.g. sex, exclu-
sive breastfeeding, education, See Table  1); sj and uj 
are random effects that allow for spatially structured 

logit
(

pij
)

= β0 +

Q
∑

q=1

βqXiq +

L
∑

l=1

γlZil + sj + uj

Table 1  Descriptive characteristics of the study population (n = 3593)

All variables were significant at p-value < 0.001, except for minimum dietary diversity (p-value = 0.840)

Continuous Covariates Non-stunted Mean 
value (SE)

Stunted
Mean value (SE)

N

 Age (months) 27 (0.4) 31 (0.4) 3593 -

Birth weight (kg) 3.4 (0.0) 3.3 (0.0) 3328 -

 Preceding birth interval (months) 45 (0.7) 43 (0.7) 2586 -

 Categorical Covariates Non-stunted (%) Stunted (%) N (%) OR*
Sex of child Female 53.1 42.9 1768 (49.2) 1.00

Male 46.9 57.1 1825 (50.8) 1.51

Exclusive
breastfeeding

Yes 31.1 11.3 349 (25.2) 1.00

No 68.9 88.7 1037 (74.8) 3.55

Diarrhoea in the last two weeks No 11.3 15.4 462 (12.9) 1.00

Yes 88.7 84.6 3131 (87.1) 1.42

Drug for intestinal parasite (in the last 2 weeks) Yes 68.6 82.0 2646 (73.7) 1.00

No 31.4 18.0 943 (26.3) 0.48

Minimum dietary diversity Yes 21.7 21.2 316 (21.5) 1.00

No 78.3 78.8 1152 (78.5) 1.03

Mother highest education Secondary & higher 16.7 6.6 463 (12.9) -

Primary only 71.1 75.4 2615 (72.8)

No education 12.1 18.0 516 (14.4)

Mother BMI Underweight (BMI < 18.5) 4.0 6.1 154 (4.8) -

Normal 70.0 76.6 2323 (72.6)

Overweight & Obese
(BMI ≥ 25)

26.0 17.3 724 (22.6)

Sanitation Improved 73.0 65.3 2494 (70.0) 1.00

Non-improved 27.0 34.7 1067 (30.0) 1.43

Flooring Good 27.1 12.6 769 (21.6) 1.00

Poor 72.9 87.4 2796 (78.4) 2.58

Cooking fuels Good/medium 18.9 9.2 540 (15.2) 1.00

Poor 81.1 90.8 3023 (84.8) 2.30

Drinking water source Improved 74.3 67.1 2551 (71.6) 1.00

Non-improved 25.7 32.9 1014 (28.4) 1.42

Wealth index Richest 21.3 9.1 599 (16.7) -

Richer 19.4 13.2 612 (17.0)

Middle 19.6 19.3 700 (19.5)

Poor 19.1 26.8 791 (22.0)

Poorest 20.6 31.6 891 (24.8)

Type of residence Urban 20.2 10.3 591 (16.4) 1.00

Rural 79.8 89.7 3003 (83.6) 2.20
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variation (spatial random effect) and unstructured het-
erogeneity (non-spatial random effect), respectively.

For the model inference, a Bayesian approach was 
used for estimating the posterior distribution of model 
parameters. The missing values in the covariates were 
considered as ignorable missing completely at random 
(MCAR) [16]. That is, we assume that there is no system-
atic difference in the missingness mechanism. Hence, we 
needed to specify an imputation model since we want 
include individuals with missing values in the model. We 
addressed this by using Bayesian imputation sub-models 
[17], where covariates with missing data were assumed as 
random variables rather than fixed. For the continuous 
covariates, a normal distribution likelihood was specified 
Xi ∼ N

(

µXi, σ
2
X

)

 with vague priors were assumed for the 
mean µXi and variance σ 2

X . For the categorical covariates, 
we assumed a multinomial distribution Zi ∼ MN (1,πik) , 
where πik are the probabilities for the k = 1, ..,K  cat-
egories. Adapting the convention that for k = 1 (the 
base category) the linear predictor ηZi1 = 0 , we model 
the probabilities as πik = exp(ηZik)/

∑

k exp(ηZik) . 
For k = 2, . . . ,K  , we assumed the linear predictor as 
ηZik ∼ N

(

µZk , σ
2
Z

)

 with vague priors for the mean µZk 
and variance σ 2

Z.
To complete the model, we assigned prior distri-

butions for all unknown parameters. For the param-
eters of the continuous covariates, we assigned the 
normal priors βp ∼ N (0, σ 2

β ) with uniform standard 
deviations σβ ∼ U(0, 10 ). For the categorical covari-
ates, we set γ1 = 0 as corner constraints for the ref-
erence categories and assigned the normal priors 
γl ∼ N (0, σ 2

γ ) , l = 2, . . . , J  , with uniform standard devia-
tions σγ ∼ U(0, 10 ). We modelled the spatially struc-
tured variation as zero-centered Gaussian random field. 
The joint density s = {si, . . . , sJ } is a multivariate normal 
(MV) distribution s ∼ MV (0,�) defined by the isotropic 
exponential covariance function � = σ 2

s exp(−φd) , 
where d is a J × J  matrix of the distances between the 
clusters. We assigned a uniform standard deviation for 
the spatial variance parameter σs ∼ U(0, 10 ) and the dis-
tance decay parameter (range) φ ∼ U(0, 1) . We modelled 
the unstructured heterogeneity as normal exchange-
able random intercepts uj ∼ N (0, σ 2

u ) with uniform prior 
standard deviation σu ∼ U(0, 10) . Regarding the covari-
ate imputation models for the continuous covariates, the 
assumed vague normal priors are µX ∼ N (0, 0.001) and 
uniform standard deviations for σX ∼ U(0, 10) . Similarly, 
we assumed vague normal priors for µZk ∼ N (0, 0.001) 
and the uniform standard deviations for σZ ∼ U(0, 10).

We fitted two separate models with similar strictures, 
except for the inclusion or exclusion of spatially struc-
tured random effects. Model 1 included only the spatially 
unstructured random effects, while model 2 included 

both the spatially structured and unstructured random 
effects. The models were implemented in WinBUGS 1.4 
[18], using Markov Chain Monte Carlo (MCMC) simu-
lation techniques. We run a chain of 40,000 iterations 
and discarded the first 20,000, obtaining a final sample 
of 20,000 for inference and summary statistics. Conver-
gence was checked by visual inspection of the MCMC 
chains.

Residual predictions were made for the centroids of a 
5 × 5 km grid designed within the study region. Assum-
ing independence between the prediction locations, the 
prediction weights �oi = �oi�ij were estimated at each 
step of the MCMC iterations based on the covariances 
between the prediction and the observation locations  �oi 
and the covariances between the observations �ij . For 
any of the grids, the predicted residual at its centroid is 
a weighted average of the data, u0 = �oiui . We used the 
spatial.unipred function in WinBUGS to undertake this 
task. An alternative function is the spatial.pred func-
tion based on conditional predictions which is rather 
extremely computationally intensive.

Model validation and comparison
We used the cross-validatory posterior Bayesian proba-
bility values (B-p-values) and conditional predictive ordi-
nates (CPO) to evaluate the predictive performance of 
the models. The CPO expresses the posterior probability 
of observing the outcome yij when the model is fitted to 
all data except yij . Larger values imply a better fit of the 
model to yij , and very low CPO values suggest that yij is 
an outlier with regard to the model being fitted [19]. The 
computation of B-p-values involves sampling replicates 
from the models yrepij ∼ Bern(pi) and estimating the prob-
abilities Pr

(

y
rep
ij = yij|y

)

 . The CPO is the equivalence of 
leave-one-out as cross validation. We calculated CPO for 
each observation as Pr

(

yi|y[ij]
)

 , where y[ij] represents all 
data sets except yij . Observations with high B-p-values 
values are also indications of a good fit, while those with 
low values indicate a poor fit. For the comparison of 
models 1 and 2, we used the pseudo marginal likelihood 
(PsML) measure, also a pseudo Bayes factor. This is esti-
mated as the product of the CPOs or the sum of their 
logged values [20]. A higher value of the PsML implies a 
better fit of a model to the observations.

Prediction of spatial residual effects
The spatial residual effects of stunting were predicted 
using a 5 × 5  km grid for the whole surface of Rwanda. 
The 5 × 5  km grid surface was used to match previous 
published work on stunting prediction in Rwanda [9, 12]. 
The use of the 5 × 5 km grid takes into account the dis-
placement of household clusters, conducted by the DHS 
to protect the privacy of respondents [21]. The spatial 
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residuals were reported as odds ratios. Also, to under-
stand the factors that could explain the predicted risk of 
stunting not accounted for by the geostatistical model, 
a visual comparison of the spatial pattern of the spatial 
residuals from this study was made with the results of a 
previous study by the authors on the spatial pattern of 
stunting in Rwanda [22].

Results
Study population
The descriptive characteristics of the study popula-
tion are presented in Table 1. Stunted children on aver-
age were older (31  months) than non-stunted children 
(27  months). The child birth weight was 3.4  kg for 
non-stunted children and 3.3  kg for stunted children. 
The preceding birth interval was two months more for 
non-stunted children than for stunted children. In the 
study population, male children were 49.2% and female 
children were 50.8%; male children were more stunted 
(57.1%) compared to female children (42.9%). Exclu-
sive breastfeeding was low in this study population, only 
25.2% of children were exclusively breastfed in the last 
six months. Of all children, 12.9% had diarrhoea in the 
last two weeks. As many as 73.7% of the children had 
received drugs for intestinal parasites in the two weeks 
that preceded the survey. Children with a food consump-
tion with minimum dietary diversity were only 21.5%. 
Mothers who had secondary education were 12.9% and 
those who did not have any education were 14.4%. Most 
mothers (72.6%) had a normal body mass index. Regard-
ing household factors, 30% of the households relied on 
non-improved sanitation, 78.4% had poor flooring in 
their house, 84.8% used poor cooking fuels, and 28.4% 
used a non-improved source for drinking water. If we 
consider the wealth index, 24.8% of the households were 
in the category ‘poorest’, and 22.0% in the category ‘poor’. 
Most of the households (83.6%) live in rural areas, with 
only 16.4% living in an urban area. All factors, apart from 
minimum dietary diversity, were significantly different 
between stunted and non-stunted children.

Figure  2 indicates the stunting prevalence of children 
in Rwanda at the household cluster level. At the house-
hold cluster level, the prevalence varies from 0 to 100%. 
High stunting prevalence was predominantly found in 
the Western and Southern parts of the country. Kigali 
province has more household clusters with zero stunting 
prevalence.

Model fit and comparison
The B-p-values and CPO values ranged from 0.12 to 0.96 
and 0.11 to 0.95 for model 1 respectively. For model 2, 
the B-p-values and CPO values respectively ranged from 
0.12 to 0.96 and from 0.11 to 0.95. These values indicate 

a good fit for both models since no extreme low val-
ues were observed. Dividing either by their maximum 
to scale to a maximum of one, the lowest values were 
approximately 0.12 for both models, far greater than the 
limit of 0.001 suggested by Weiss (1994). The PsML for 
model 1 was -2050.1 and that of model 2 was -2035.7, 
indicating that model 2 is superior to model 1.

Risk factors of stunting
The posterior means odds ratios and the 95% confidence 
intervals for the odds ratio of the Bayesian spatial model 
are shown in Table 2. The geostatistical model indicated 
that age of child, child’s sex, birthweight, exclusive breast-
feeding, occurrence of diarrhoea in the last two weeks, 
BMI of the mother, and education level of the mother 
were significantly associated with stunting. The type 
of flooring material of the house, type of water source 
used, and wealth index category also predicted stunting 
significantly.

Older children have a slightly higher risk of stunting. 
Children with a higher birth weight had a lower stunt-
ing risk (OR = 0.96, 95% CI: 0.95, 0.97). Male children 
had an increased risk of stunting compared to female 
children (OR = 1.32, 95% CI: 1.16, 1.47). Exclusive 
breastfeeding was protective against stunting. The odds 
of stunting were 24% higher in children who were not 
exclusively breastfed compared to children who were 
exclusively breastfed (OR = 1.24, 95% CI: 1.04, 1.45). 
Similarly, the odds of stunting among children who 
had diarrhoea in the last two weeks preceding the sur-
vey was higher than those who did not have diarrhoea 
(OR = 1.18, 95% CI: 1.02, 1.37). The odds of stunting 
were 15% higher among children whose mothers had no 
or only primary education, compared to children whose 
mothers had secondary and higher education level 
(OR = 1.15, 95% CI: 0.99, 1.36). Poor flooring of the 
inhabited house also significantly increased the risk of 
stunting in children (OR = 1.22, 95% CI: 1.06, 1.41). As 
could be expected, children whose household is catego-
rised as ‘poorest’ also had an elevated risk of stunting 
(OR = 1.24, 95% CI: 1.07, 1.42). Use of a non-improved 
water source also increased the risk of stunting by 13% 
compared to households that do have access to an 
improved water source (OR = 1.13, 95% CI: 1.00, 1.27). 
The type of residence also was significantly associated 
with stunting, with households in rural areas having 
a higher risk of stunting compared to households in 
urban areas (OR = 1.14, 95% CI: 0.99, 1.35). Although 
some covariates such as the preceding birth interval, 
type of cooking fuels, and sanitation were not signifi-
cantly associated with stunting in the spatial model, the 
direction of their relationship with stunting was as one 
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would expect. In the univariate analysis (Table 1) these 
covariates were significantly associated with stunting.

Spatial residual effects prediction
Figure  3 shows the spatial residual effects for stunting 
after accounting for the covariates in the binary logis-
tic spatial model, and Fig.  4 displays the correspond-
ing prediction uncertainty. In Fig. 2, areas with higher 
odds ratios have increased risk of stunting, and areas 
with lower odds ratios have decreased risk of stunting 
in children less than five years, again after accounting 
for the covariates in the geostatistical model. The cen-
tral area of Rwanda that includes Kigali province, and 
the Eastern part show unexplained lower risk of stunt-
ing, while the Western, Northern and Southern regions 
show unexplained higher risk of stunting.

Discussion
Our study provides evidence of the spatial variation of 
stunting in Rwanda and the risk of stunting that is still 
persistent after individual, maternal, socio-economic 
and dietary factors were taken into account. In the spa-
tial model, child characteristics such as child age, child 
sex, birthweight, exclusive breastfeeding and having had 
diarrhoea in two weeks that preceded the survey were 
important predictors of stunting. Previous research also 
showed that male children are more likely to be stunted 
than female children [23–25]. The odds of stunting 
increased as the age of children increased. However, the 
odds were not higher than previously identified in other 
studies [26, 27], probably because age was considered 
as a continuous variable in the model. Consideration 
of age as a categorical variable would classify the risk 
of stunting per age group, and this risk has been shown 
to be higher in older children than in younger children 

Fig. 2   Stunting prevalence at household cluster level in Rwanda (source: DHS, 2015). Map created using ArcGIS Desktop version 10.6, licensed 
(https://​www.​esri.​com/)

https://www.esri.com/
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[28, 29]. A higher birth weight of children was associ-
ated with slightly lower odds of stunting. Children who 
are born with a low birth weight (< 2.5 kg) have a higher 
risk of stunting in the first 1000 days of their life [30]. In 
this study, non-exclusive breastfeeding in the previous six 
months was associated with the second highest odds of 
stunting after child’s sex. The protective effect of exclu-
sive breastfeeding on child stunting is a well-established 
evidence [5, 31]. Thus, the need for mothers to exclu-
sively breastfeed their children in the first six months of 
life cannot be overemphasized. Children who had diar-
rhoea in the previous two weeks had increased odds of 

stunting compared to children who did not. This is con-
sistent with the available evidence on the negative effect 
of diarrhoea on the linear growth of children [32]. Early 
childhood enteric infections have been shown to con-
tribute to malnutrition, which in turn leads to increased 
vulnerability to infections [33, 34]. Micronutrients such 
as vitamin A and zinc deficiencies have been linked to the 
disruption of intestinal barrier and absorption functions 
[34]. In Rwanda, although most younger children are 
supplemented with vitamin A every six months [10], the 
dietary intake of these crucial micronutrients is generally 
still below nutrient requirements especially for dietary 

Table 2  Risk factors for childhood stunting in Rwanda, 2015 from the binary logistic Bayesian geostatistical model

a The continuous variables were centered around the mean. OR odds ratios

Covariates OR 95% CI

 Age (months)a 1.015 (1.010, 1.024)

Birthweight (kg)a 0.961 (0.950, 0.973)

 Preceding birth interval (months)a 1.000 (0.990, 1.004)

Sex of child Female 1.000

Male 1.320 (1.161, 1.473)

Exclusive breastfeeding Yes 1.000

No 1.241 (1.045, 1.452)

Diarrhoea in the last two weeks No 1.000

Yes 1.181 (1.021, 1.373)

Drug for intestinal parasite (in the last 2 weeks) Yes 1.000

No 0.762 (0.671, 0.874)

Minimum dietary diversity Yes 1.000

No 0.931 (0.791, 1.084)

Mother highest education Secondary & higher 1.000

Primary 1.142 (0.991, 1.312)

No education 1.154 (0.991, 1.364)

Mother BMI Underweight 1.000

Normal 1.011 (0.886, 1.153)

Overweight & Obese 0.823 (0.711, 0.953)

Sanitation Improved 1.000

Non-improved 1.061 (0.943, 1.214)

Flooring Good 1.000

Poor 1.224 (1.062, 1.414)

Cooking fuels Good/medium 1.000

Poor 1.063 (0.883, 1.243)

Drinking Water source Improved 1.000

Non-improved 1.134 (1.001, 1.272))

Wealth index groups Richest 1.000

Richer 0.893 (0.763, 1.034)

Middle 1.012 (0.875, 1.171)

Poorer 1.151 (0.991, 1.334)

Poorest 1.240 (1.074, 1.424)

Type of residence Urban 1.000

Rural 1.143 (0.992, 1.354)
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zinc intake [29, 35]. Thus, to break this vicious cycle, 
proper sanitation facilities, coupled with balanced nutri-
tion, especially in impoverished regions are still urgently 
needed. Unsurprisingly, households with access to a non-
improved water source had higher odds of stunting com-
pared to households with access to an improved water 
source. The same pattern was observed for households 
with poor flooring and households located in rural areas. 
These results confirm the impact socio-economic condi-
tions on increasing or reducing the risk of stunting. The 
consistent high levels of stunting found in children living 
in rural areas compared to their counterparts living in 
urban areas clearly illustrates this [10, 25].

The maternal factors considered in the model, mother 
BMI and education level, were both significantly asso-
ciated with stunting. Children of overweight mothers 
had less risk of becoming stunted compared to children 

from underweight mothers. Also, having a mother with 
no or only primary education increased the risk of stunt-
ing compared to having a mother with secondary or 
higher education. The predicted association of mother’s 
BMI and education with stunting is consistent with the 
findings of previous studies [36–38], and emphasizes 
the importance of mother’s health and their knowl-
edge on the nutritional wellbeing of children. Although 
children of overweight and obese women were at low 
risk of stunting in this study, maternal obesity has been 
shown to increase the risk of childhood obesity, which 
can continue into adolescence and adulthood [38]. Chil-
dren whose household was in the poorest category of the 
wealth index had the highest odds of stunting compared 
to children from households in the richest category. The 
poorest category was the only statistically significant cat-
egory, compared to poorer, middle and richer categories. 

Fig. 3   Spatial residual effects of stunting expressed as odds ratios on a 5 × 5 km grid resolution based on geo-located household cluster-level data. 
Map created using ArcGIS Desktop, version 10.6, licensed (https://​www.​esri.​com)

https://www.esri.com
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[39] reported a similar positive association where liv-
ing in absolute poverty was associated with poor child 
development.

The spatial heterogeneity of predicted residuals 
observed in Rwanda (Fig.  3) suggests that unobserved 
factors, not accounted for by the covariates in the geo-
statistical model, contribute to the geographical dis-
parities in stunting outcomes. The predicted spatial 
residual effects depict a spatial pattern of the risk of 
stunting which is pronounced mainly in the Western 
region, followed by the Northern and Southern regions of 
Rwanda. As stunting is multifactorial, the factors contrib-
uting to stunting require further investigation. Although 
our model included not only child related factors but also 
dietary covariates, other child and non-child related fac-
tors might be contributing to the unexplained variance. 
We believe among the factors non-accounted for in the 

model, that mycotoxins exposure might very well be an 
important factor [40]. This is because there is a strong 
and well-established evidence of the negative effect of 
mycotoxins exposure on the growth of children. Other 
research has shown that mycotoxins exposure, especially 
during the complementary feeding period, is associ-
ated with stunting in children [40–45]. The lack of geo-
graphically explicit mycotoxins data in Rwanda has been 
highlighted by the authors before as a barrier in further 
analysing this potential relation [22].

Preceding research by Uwiringiyimana, Veldkamp [22] 
on the spatial pattern of stunting in Rwanda developed a 
proxy measure of aflatoxins exposure. In this study, we 
again used this proxy variable of mycotoxins exposure 
but now to map and inspect if a relationship can be iden-
tified with the unexplained variance in stunting as pre-
dicted by our geostatistical model. The proxy variable for 

Fig. 4   Uncertainty map for the posterior spatial residual effects displayed as standard deviation (SD) on 5 × 5 km grid resolution. Map created 
using ArcGIS Desktop version 10.6, licensed (https://​www.​esri.​com/)

https://www.esri.com/
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mycotoxins developed by [22] classified household clus-
ters as being at high or low risk of mycotoxins exposure 
depending on whether clusters were served by an urban 
market, a rural market or neither served by an urban nor 
a rural market. An urban market was considered to be at 
the start of the food supply chain, while a rural market 
was considered to be at the lower end of the food sup-
ply chain of complementary flours. Household clusters 
served by an urban market were considered to have a 
lower risk of exposure to contaminated complementary 
flours than clusters served by rural markets at the lower 
end of the food supply chain [22]. Household clusters not 
served by an urban nor by a rural market, i.e. the most 
remote areas, were considered to have the highest risk of 
exposure to contaminated flours.

Figure 5 shows the spatial residual effects map together 
with the spatial distribution of household clusters that 
are served by an urban market, a rural market only, and 
neither an urban nor a rural market within a 5  km (A) 
and 10 km (B) radius of the household cluster. For both 
maps, especially panel B, the green zones represent-
ing lower risk of stunting are associated with household 
clusters that are served by urban markets. This matches 
with our hypothesis that household clusters served by 
an urban market have a lower risk of exposure to myco-
toxins. In other words, household clusters served by an 
urban market are likely to have access to better quality of 
food. The correlation between the residual odds ratios, 
sampled at each household cluster location, and the three 
classes of household clusters was significant for both 
panel A (r = 0.232, p-value < 0.01) and panel B (r = 0.279, 
p-value < 0.01). Also, a pattern can be observed in the 
Western and Southern provinces where a high unex-
plained risk of stunting coincides with household clusters 
that are not served by an urban and not by a rural mar-
ket (Fig. 5A), and with household clusters that are served 
by mostly rural markets (Fig.  5B). On the other hand, 
the Eastern region, which also features clusters with no 
access to an urban or a rural market (Fig. 5A), depicts a 
lower risk of stunting. We expect that there is an inter-
play of factors both in the regions with high unexplained 
risk of stunting or regions with low unexplained risk 
of stunting, children in the high-risk regions might be 
already at a disadvantage, in such a way that the addition 
of mycotoxins contamination more drastically affects 
them compared to children whose only risk would be the 
exposure to mycotoxins. We underline that this compari-
son takes into account the limitations of using the proxy 
variable of exposure to mycotoxins as discussed in [22].

Elevation is another factor that could explain the 
residual variability in stunting as it has been shown to be 
associated with stunting in children [46, 47]. Although 
not considered in our model, the regions with a high 

unexplained risk of stunting coincide with regions with 
high altitude (see Fig. 3). Previous research spatially pre-
dicted stunting on a national level in Africa and Rwanda 
[9, 12]. However, the prediction of stunting was done 
using non-child related covariates such as surface tem-
perature, night time lights and elevation. Our study 
strength lies in using child-related factors that are known 
to have a causal relationship with stunting in our geo-
statistical model, to study the risk factors of stunting in 
Rwanda, and predict the spatial residuals effects of stunt-
ing. Predicting the spatial residual effects by incorporat-
ing individual and household related factors has been 
done previously in other studies, to better understand 
the spatial distribution of Schistosoma mansoni infec-
tion in Ivory Coast [48] and of malaria in Malawi [49]. 
All the variables included in the spatial model, except for 
the minimum dietary diversity, were strong predictors 
of stunting in children. Although the association of the 
minimum dietary diversity with stunting was not signifi-
cant in the univariate analysis, we kept the covariate in 
the spatial model because of its known effect on stunt-
ing in children. More generally, applying Bayesian geo-
statistical modelling to our data had different advantages. 
First we could apply prior knowledge in the model using 
published sources [12]. Second, using covariates strongly 
associated with stunting, the spatial residual effects of 
stunting that display the unexplained risk of stunting in 
Rwanda were predicted. Third, normal regression meth-
ods usually applied to study the risk factors of stunting do 
not take into account the spatial heterogeneity and spatial 
dependence that exist in stunting. Our model used the 
geographical locations of household clusters to estimate 
the spatial dependency in childhood stunting in Rwanda.

Our study also had some limitations. First, because the 
covariates such as exclusive breastfeeding and minimum 
dietary diversity are measured by DHS only for chil-
dren < 2 years, this introduced missing values in the data 
for all children aged ≥ 2  years. Consequently, the small 
sample of children for which dietary data were available, 
might have led to the lack of association between mini-
mum dietary diversity and stunting. Second, although 
our study is the first to apply geostatistical modelling to 
predict the unexplained risk of stunting in Rwanda, our 
model did not take into account environmental factors 
that might influence stunting. Thus, further research on 
modelling the unexplained risk of stunting can further 
study the underlying factors that determine the spa-
tial pattern of the higher and lower odds of the spatial 
residuals effects observed in this study. The model can be 
strengthened by incorporating non-child related factors 
that could shed light on the unexplained odds ratios of 
stunting. Also, for future research, the extent of the nega-
tive effect of mycotoxins exposure on growing children 
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Fig. 5   Spatial residual effects map overlaid with the spatial distribution of household clusters that are served by either an urban market, a rural 
market only, and neither an urban nor a rural market within a 5 km (A) and 10 km (B) radius of the household cluster. Maps created using ArcGIS 
Desktop version 10.6, licensed (https://​www.​esri.​com/)

https://www.esri.com/
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urgently needs to be evaluated. Studies determining the 
extent of mycotoxins contamination along the food sup-
ply chain in Rwanda, by taking into account the spatial 
variation in mycotoxins, can provide the needed data to 
better examine this relationship. Such research would 
serve to inform policy on the extent of mycotoxins con-
tamination in the food supply chain and provide spatially 
informed evidence of the effect of mycotoxins exposure 
on the spatial pattern of stunting in Rwanda.

Conclusion
Stunting in Rwanda varies spatially at a much finer geo-
graphical scale than the district level which is the usual 
spatial unit to present levels of stunting in Rwanda. Our 
study applied an advanced geostatistical method to study 
the risk factors of stunting in Rwanda and predict the 
unexplained odds of stunting in the study population. 
Although stunting is multifactorial, studies that take into 
account spatial dependency of stunting are necessary to 
obtain improved understanding of its drivers on a local 
scale. Using Bayesian geostatistical modelling offers the 
opportunity to study the spatial pattern of stunting by 
taking into account its spatial dependency, and by reveal-
ing residual risk of stunting unexplained by the model. 
The identification of areas with a high spatial residual 
odds ratio implies that further research is needed to iden-
tify currently unknown but spatially explicit factors asso-
ciated with high stunting risk.
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