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Abstract 

Background: Antigen tests for SARS-CoV-2 offer advantages over nucleic acid amplification tests (NAATs, such as RT-
PCR), including lower cost and rapid return of results, but show reduced sensitivity. Public health organizations recom-
mend different strategies for utilizing NAATs and antigen tests. We sought to create a framework for the quantitative 
comparison of these recommended strategies based on their expected performance.

Methods: We utilized a decision analysis approach to simulate the expected outcomes of six testing algorithms 
analogous to strategies recommended by public health organizations. Each algorithm was simulated 50,000 times in 
a population of 100,000 persons seeking testing. Primary outcomes were number of missed cases, number of false-
positive diagnoses, and total test volumes. Outcome medians and 95% uncertainty ranges (URs) were reported.

Results: Algorithms that use NAATs to confirm all negative antigen results minimized missed cases but required high 
NAAT capacity: 92,200 (95% UR: 91,200-93,200) tests (in addition to 100,000 antigen tests) at 10% prevalence. Selective 
use of NAATs to confirm antigen results when discordant with symptom status (e.g., symptomatic persons with nega-
tive antigen results) resulted in the most efficient use of NAATs, with 25 NAATs (95% UR: 13-57) needed to detect one 
additional case compared to exclusive use of antigen tests.

Conclusions: No single SARS-CoV-2 testing algorithm is likely to be optimal across settings with different levels of 
prevalence and for all programmatic priorities. This analysis provides a framework for selecting setting-specific strate-
gies to achieve acceptable balances and trade-offs between programmatic priorities and resource constraints.
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Background
The COVID-19 pandemic, caused by the SARS-CoV-2 
virus, continues to cause significant morbidity, mortal-
ity, and economic hardship worldwide. Diagnostic testing 

is a cornerstone of COVID-19 response strategies in the 
U.S. and globally [1, 2]. Nucleic acid amplification tests 
(NAATs, such as real-time reverse transcription–poly-
merase chain reaction [RT-PCR]) and antigen tests are 
used to diagnose current infection with SARS-CoV-2 
virus. NAATs are sensitive tests for SARS-CoV-2 infec-
tion and are often utilized as “gold-standard” assays for 
the diagnosis of COVID-19 [3]. However, programmatic 
implementation of NAATs may face challenges, such 
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as long turnaround times, which hampers the ability of 
testing programs to be used to interrupt transmission 
[4]. Additionally, NAATs often carry substantial costs 
associated with reagents, equipment, personnel train-
ing and salaries, and quality control. Antigen tests offer 
several advantages over NAATs for SARS-CoV-2 testing 
programs, including lower costs, point-of-care adminis-
tration, and rapid return of results. In particular, use of 
serial antigen testing may provide benefits over NAATs 
for controlling outbreaks in some settings, such as con-
gregate living facilities [5]. To expand COVID-19 testing 
availability, the U.S. government distributed 150 million 
antigen tests in 2020 [6].

Despite the advantages of lower costs and faster turna-
round time, antigen tests are generally less sensitive than 
NAATs for diagnosis of COVID-19, particularly for per-
sons without COVID-19 symptoms [3]. In many cases, 
it is recommended to confirm the results of antigen tests 
with the use of more sensitive NAATs [5]. Several strat-
egies for the use of antigen tests and NAATs have been 
recommended by public health organizations such as the 
U.S. Centers for Disease Control and Prevention (CDC) 
[5], the World Health Organization (WHO) [7], and 
the European Centre for Disease Prevention and Con-
trol (ECDC) [8]. Depending on program goals, different 
strategies may be optimal for maximizing case detection, 
minimizing lost productivity, or minimizing the use of 
NAAT testing. To date, there has been no quantitative 
comparison of the expected performance and testing 
efficiency of these different strategies at various levels of 
prevalence. In this analysis, we evaluated the diagnostic 

performance and testing volumes of SARS-CoV-2 anti-
gen and NAAT programs under six diagnostic algorithms 
using a simulation-based decision analysis approach.

Methods
Population and Model Structure
We evaluated outcomes of a modeled population of 
100,000 persons seeking community-based SARS-CoV-2 
testing (rather than facility-based serial testing) in set-
tings of 5%, 10%, 15%, and 20% prevalence of SARS-
CoV-2 infection. (Numerical results summarized in the 
text focus on the 10% prevalence level for conciseness.) 
Prevalence levels can vary substantially over time and 
geographically [9] and these levels of prevalence were 
selected as representative of the range of percent positiv-
ity by RT-PCR in a majority of U.S. states in March 2021 
[10]. Model input parameter estimates were derived from 
antigen test evaluations in the U.S. from September to 
December 2020 (Table  1). Because these primary data 
were collected within U.S. populations, this analysis rep-
resents expected outcomes in a U.S. setting.

We evaluated six diagnostic algorithms which were 
adapted from current recommendations for SARS-CoV-2 
antigen testing in various settings. These algorithms are 
illustrated in Fig.  1 and can be summarized as follows: 
(A) NAAT Only – each person is tested for SARS-CoV-2 
infection by a NAAT. (B) Antigen (Ag) Only – each per-
son is tested using a single antigen test, the result of 
which is used as a definitive diagnosis. This algorithm 
represents settings with access to point-of-care antigen 
tests, but no access to NAAT. (C) NAAT Confirmation for 

Table 1 Sampling distributions from empiric studies for model input parameters

Abbreviations: NAAT – Nucleic Acid Amplification Test
a  Parameter values sampled from a triangular distribution with the modal value defined by the point estimate and upper and lower bounds defined by the range
b  Symptom criteria varied across reports used to estimate parameter values but were generally defined as the presence of one or more COVID-19 symptom at the 
time of testing
c Model assumption

Parameter Point Estimate a Range a References

Percent of Cases Reporting  Symptomsb at Time of Testing 67% 54-84% 12–15

Percent of Non-Cases Reporting  Symptomsb at Time of Testing 32% 18-53% 12, 13, 15

Antigen Test Sensitivity Among  Symptomaticb Cases 80% 64-94% 12, 13, 15–17

Antigen Test Sensitivity Among Asymptomatic Cases 55% 41-69% 12, 13, 15–18

Antigen Test Specificity Among  Symptomaticb Non-Cases 99.7% 98.9-100% 12, 13, 15–17

Antigen Test Specificity Among Asymptomatic Non-Cases 99% 98.0-100% 12, 13, 15–18

NAAT Sensitivity for viral RNA Detection (including previously infectious persons) c 100%

NAAT Specificity c 100%

Sensitivity of Repeat Antigen Test (After Initial Negative Antigen Result) 18% 10-29% 13

Specificity of Repeat Antigen Test (After Initial Negative Antigen Result) 100% 99.8-100% 13

Proportion of Asymptomatic Non-Cases Reporting Recent Close Contact Exposure at 
Time of Testing

27% 9-45% 12,13

Mean Time Elapsed Between Sampling and Return of NAAT Result (days)c 3 1-5



Page 3 of 10Salvatore et al. BMC Public Health           (2022) 22:82  

Symptomatic Antigen-Negative (Sx/Ag-neg) and Asymp-
tomatic Antigen-Positive (Asx/Ag-pos) Results – each per-
son receives an antigen test and NAAT is used to confirm 
diagnoses in persons for whom antigen results do not 
match binary symptom status (e.g., a symptomatic person 
whose antigen result is negative). (D) NAAT Confirma-
tion of Negative Antigen Results (Ag-neg) – each person 
receives an antigen test and NAAT is used to confirm 
negative antigen test results. (E) Repeat Antigen Con-
firmation of (Ag-neg) – each person receives an antigen 
test and, for those with initial negative results, a repeat 
antigen test (performed within approximately 30  min 
of the initial test) is used to confirm negative diagnoses. 
(F) NAAT for Asymptomatic Persons (Asx) & Sympto-
matic Persons with Positive Antigen Results (Sx/Ag-pos) 
– asymptomatic persons receive a NAAT; symptomatic 

persons receive an antigen test followed by a NAAT for 
those with positive antigen results.

Parameterization and Sampling
Parameters from empirical studies used for model simu-
lations are summarized in Table 1. Antigen test sensitiv-
ity and specificity were assumed to be conditional on the 
binary symptom status of the person evaluated [11]; the 
prevalence of symptoms was modeled independently for 
infected and uninfected populations. We made the par-
simonious assumption that sensitivity and specificity of 
NAATs are 100% as NAATs are typically considered the 
“gold standard” for diagnosis of SARS-CoV-2 infection. 
Sensitivity and specificity of repeat antigen testing were 
assumed to be conditional upon negative initial anti-
gen results. Mathematical definitions for algorithms are 

Fig. 1 Modeled algorithms for SARS-CoV-2 NAAT and antigen testing. Each panel illustrates the testing strategy utilized for one of the modeled 
algorithms. Algorithm abbreviations and descriptions – A NAAT Only: each person tested receives a NAAT (such as an RT-PCR test); B Ag Only: each 
person tested a single antigen test; C NAAT Confirmation for Sx/Ag-neg and Asx/Ag-pos: each person receives an antigen test and NAAT is used to 
confirm diagnoses in persons for whom antigen results do not match binary symptom status (e.g., a symptomatic person whose antigen result is 
negative); D NAAT Confirmation of Ag-neg: each person receives an antigen test and NAAT is used to confirm negative antigen test results; (E) Repeat 
Ag Confirmation of Ag-neg: each person receives an antigen test and, for those with initial negative results, a repeat antigen test (performed within 
approximately 30 min of the initial test) is used to confirm negative diagnoses; F NAAT for Asx & Sx/Ag-pos: – asymptomatic persons receive a NAAT, 
while symptomatic persons receive an antigen test followed by a NAAT for those with positive antigen results
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detailed in the Supplementary Methods and Supplemen-
tary Table S1.

Parameters were sampled from triangular distribu-
tions (defined by a modal value and upper/lower bounds, 
characterized in Table  1) using Latin hypercube sam-
pling to generate 50,000 simulations of each algorithm 
at each prevalence level. Outcomes are reported as the 
median and 95% uncertainty range (UR) of simulations 
for each scenario. URs can be interpreted as the range of 
outcomes that can be expected for algorithms under the 
most- and least-optimistic scenarios described by input 
parameter ranges. All calculations and analyses were 
performed using R software version 4.0.2 (R Core Team, 
Vienna, Austria). Code for the algorithm simulations can 
be found on the CDC collaborative software GitHub site 
(https:// github. com/ CDCgov/ SARS- CoV-2- NAAT- and- 
Antig en- Testi ng- Algor ithms).

Primary Outcomes
Primary outcomes of interest were numbers of missed 
cases (persons with SARS-CoV-2 infection who receive 
a definitive diagnosis of “uninfected” by antigen testing 
with no recommendation for additional testing), false 
positive diagnoses (uninfected persons with a definitive 
diagnosis of “infected” by antigen testing with no recom-
mendation for additional testing), and numbers of anti-
gen tests and NAATs performed per 100,000 persons 
evaluated. Secondary outcomes (including person-time 
of lost productivity) and sensitivity analyses are available 
in theSupplementary Materials. Positive and negative 
predictive values of each algorithm are depicted in Sup-
plementary Figure S1.

Incremental Outcomes and Trade‑Off Analysis
To characterize the potential consequences of adopting 
different testing algorithms in settings of varying NAAT 
capacity, we calculated [compared to the (A) NAAT Only 
algorithm] the incremental number of missed cases and 
saved NAATs [how many fewer NAATs were needed]
under each algorithm. These incremental measures, cal-
culated as a quotient representing the number of NAATs 
saved for each additional missed case compared to the 
(A) NAAT Only algorithm, provide an indication of the 
number of NAATs saved under different algorithms and 
the consequent trade-off of additional missed cases.

A similar incremental outcome was evaluated by com-
paring different testing algorithms to the (B) Ag Only 
algorithm and calculating the number of additional 
NAATs needed and consequent trade-off of additional 
cases detected. These measures are also presented as a 
quotient representing the number of additional NAATs 
needed for each additional case detected.

Results
Primary Outcomes
Primary outcomes for each algorithm are presented in 
Fig.  2, for settings with SARS-CoV-2 prevalence rang-
ing from 5% to 20% among 100,000 persons evaluated. 
(Detailed results are available in Supplementary Table 
S2.) Across prevalence levels, missed cases were great-
est for algorithms that did not confirm negative antigen 
results with NAATs, (B) Ag Only and (E) Repeat Ag for 
Ag-neg. At 10% prevalence, these algorithms resulted 
in 2830 missed cases [(B) Ag Only 95% UR: 1890-3740] 
and 2280 missed cases [(E) Repeat Ag for Ag-neg 95% UR: 
1507-3067], respectively. Algorithms in which NAATs 
were performed prior to all definitive negative diagnoses 
[(A) NAAT Only and (D) NAAT Confirmation of Ag-neg], 
resulted in zero missed cases (due to assumed 100% sen-
sitivity of NAATs). The remaining algorithms in which 
some but not all negative antigen results are confirmed 
by NAAT [(C) NAAT Confirmation for Sx/Ag-pos & Asx/
Ag-neg and (F) NAAT Confirmation for Asx & Sx/Ag-pos], 
resulted in intermediate numbers of missed cases. At 
10% prevalence, these algorithms result in 1409 missed 
cases (95% UR: 815-2100) and 1389 missed cases (95% 
UR: 622-2280), respectively.

False positive diagnoses were greatest in algorithms 
in which positive antigen results were not confirmed by 
NAATs— (B) Ag Only, (D) NAAT Confirmation for Ag-
neg, and (E) Repeat Ag for Ag-neg. The first two of these 
algorithms resulted in identical numbers of false positive 
diagnoses (median=635 [95% UR: 311-1031] false posi-
tive diagnoses at 10% prevalence) as both consider initial 
positive antigen results as definitive, while (E) Repeat Ag 
for Ag-neg resulted in higher numbers (median=699 [95% 
UR: 361-1105] false positive diagnoses at 10% prevalence) 
due to false positive diagnoses following the repeat anti-
gen test. Algorithms where NAATs were performed prior 
to all definitive positive diagnoses [(A) NAAT Only and 
(F) NAAT Confirmation for Asx & Sx/Ag-pos], resulted in 
zero false positive diagnoses (assumed 100% specificity of 
NAATs). The remaining algorithm [(C) NAATConfirma-
tion for Sx/Ag-pos & Asx/Ag-neg], where some but not all 
positive antigen results are confirmed by NAAT, resulted 
in low numbers of false positive diagnoses (median=134 
[95% UR: 27-330] at 10% prevalence).

Total testing volume remained constant for (A) NAAT 
Onlyand (B) Ag Only algorithms, at 100,000 NAAT 
or antigen tests, respectively. Antigen testing also 
remained constant at 100,000 testsfor (C) NAAT Con-
firmation for Sx/Ag-neg & Asx/Ag-posand (D)NAAT 
Confirmation for Ag-neg algorithms. Antigen testing 
volume was highest for the (E) Repeat Ag for Ag-neg 
algorithm and varied depending on the number of ini-
tial negative antigen results and total volume ranged 

https://github.com/CDCgov/SARS-CoV-2-NAAT-and-Antigen-Testing-Algorithms
https://github.com/CDCgov/SARS-CoV-2-NAAT-and-Antigen-Testing-Algorithms
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from a median of 185,100 tests (95% UR: 183,200-
187,000) at 20% prevalence to a median of 195,700 tests 
(95% UR: 195,100-196,300) at 5% prevalence. Among 
algorithms using antigen testing, antigen testing vol-
ume was lowest for (F) NAATConfirmation for Asx & 
Sx/Ag-pos and varied depending on the prevalence of 
symptoms among persons evaluated, ranging from 
a median of 35,500 tests at 5% prevalence (95% UR: 
23,800-49,700) to a median of 40,700 tests at 20%prev-
alence (95% UR: 30,500-52,900). Among algorithms 
using NAATs, NAAT testing volume was lowest for (C) 
NAAT Confirmation for Sx/Ag-neg & Asx/Ag-pos: at 
10% prevalence, a median of 34,100 NAATs were used 
(95% UR: 22,500-48,100). NAAT testing volume was 
higher for the (F) NAAT Confirmation for Asx & Sx/
Ag-pos and the (D)NAAT Confirmation for Ag-neg: at 
10% prevalence, a median of 68,300 (95% UR: 54,900-
79,400) NAATs and 92,200 (95% UR: 91,200-93,200) 
NAATs were used, respectively.

Incremental Outcomes and Trade‑Offs
Incremental outcomes of simulations under algorithms 
compared to corresponding simulations under the (A) 
NAAT Onlyalgorithm are depicted in Figure 3A (plotted 
as additional missed cases vs. NAATs saved, compared to 
(A) NAAT Only)at a level of 10% prevalence. The quotient 
of these measures is defined as the ratio of NAATs saved 
per additional missed case in Fig.  3B. The (D) NAAT 
Confirmation for Ag-negalgorithm had a ratio of posi-
tive infinity,resulting from zero additional missed cases 
(and a small number of NAATs saved). The (C) NAAT 
Confirmation for Sx/Ag-neg & Asx/Ag-posalgorithm had 
the most favorable ratio among remaining algorithms: at 
10% prevalence, a median of 46 NAATs were saved per 
additional missed case (95% UR: 29-83) compared to (A) 
NAAT Only.

Incremental outcomes compared to the (B) Ag Only-
algorithm are depicted in Fig.  3C (plotted as additional 
cases detected vs. additional NAATs needed) at 10% 

Fig. 2 Primary outcomes (missed cases, false positives, and test volumes) of SARS-CoV-2 testing algorithms. Each panel presents the primary 
outcomes for one of the six algorithms investigated across four levels of prevalence. The left-hand graph of each panel shows the number of 
detected cases (in green) and missed cases (in purple). Each column of the left-hand graph sums to the total number of infected cases at each 
prevalence level. The middle graph of each panel shows the number of false positive diagnoses. The right-hand graph of each panel shows the 
number of NAATs (in magenta) and antigen tests (in blue) used. Bars represent median values and error bars represent 95% Uncertainty Ranges
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prevalence. These measures are presented as a ratio of 
additional NAATs needed per additional cases detected 
in Fig. 3D. The (E) Repeat Ag for Ag-neg algorithm (which 
uses zero NAATs) had a ratio of zero additional NAATs 

needed per additional case. Among the remaining algo-
rithms, the (C) NAAT Confirmation for Sx/Ag-neg & Asx/
Ag-posalgorithm had the most favorable ratio: at 10% 
prevalence, a median of 25 NAATs were needed to detect 

(A) NAAT Only
(B) Ag Only
(C) NAAT Confirmation for Sx/Ag-neg & Asx/Ag-pos
(D) NAAT Confirmation for Ag-neg
(E) Repeat Ag for Ag-neg
(F) NAAT for Asx & Sx/Ag-pos
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Fig. 3 Trade-offs in algorithms for SARS-CoV-2 NAAT and antigen testing. Panel A depicts two primary outcomes (missed cases and NAAT volume) 
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each additional case (95% UR: 13-57) compared to (B) Ag 
Only. For both incremental outcomes, the order of algo-
rithm favorability remained constant across prevalence 
levels; however, the absolute differences between algo-
rithms shrank as prevalence increased. A summary and 
synthesis of algorithms to achieve a key programmatic 
priority, balancing missed cases and NAAT volume, is 
presented in Table  2; similar summaries for other pro-
grammatic priorities are presented in Supplementary 
Table S3.

Discussion
In this analysis, we utilized a decision analysis approach 
to provide a quantitative comparison of different strate-
gies for the use of antigen tests and NAATs in SARS-
CoV-2 testing programs. The six algorithms evaluated 
reflect differing priorities testing in populations based 
on resources, SARS-CoV-2 prevalence, and tolerance for 
missed cases and false positives. Multiple reports have 
found that antigen tests are less sensitive than NAATs 
[12–18] and will result in some antigen false-negative 
results among cases. The (A) NAAT Only and (D) NAAT 
Confirmation for Ag-neg algorithms maximize the use of 
NAATs to confirm negative antigen results and yielded 
the smallest numbers of missed cases. However, use of 
confirmatory NAATs for negative antigen results also 
incurred a need for high NAAT capacity. A strategy that 
selectively confirms negative antigen results with NAAT 
was found to be the most efficient use of limited NAATs 
[(C) NAAT Confirmation for Sx/Ag-neg & Asx/Ag-pos]. 
When uninfected people are erroneously diagnosed with 
SARS-CoV-2 infection (due to false-positive results), 
consequent isolation orders and case investigations result 
in lost productivity, unnecessary use of limited public 
health resources, and, when resulting in co-isolation with 
true cases, puts them at risk for ongoing exposure. There-
fore, algorithms which maximize NAATs to confirm 
positive antigen results yielded the smallest numbers of 
false-positive diagnoses [(A) NAAT Only and (F) NAAT 
for Asx & Sx/Ag-pos]. NAATs are often more costly to 
perform than antigen tests and may require logistical 
arrangements for timely off-site transport and testing. 
Strategies which minimize the use of NAATs [(B) Ag Only 
and (E) Repeat Ag for Ag-neg] offer benefits for resource-
limited testing programs. Each of these algorithms may 
be advisable depending on the programmatic goals and 
resource limitations of community-based SARS-CoV-2 
testing programs

Our analysis provides a quantitative framework for 
public health practitioners who are planning or evalu-
ating community-based testing programs. A reference 
guide applying the results of our analyses to program-
matic decisions, along with key priorities and indicators, 

is included in Table 2 and Supplementary Table S3. For 
programs intended to minimize missed cases, algo-
rithms (A) NAAT Only, (C) NAAT Confirmation for Sx/
Ag-neg & Asx/Ag-pos, and (D) NAAT Confirmation for 
Ag-neg are most preferable; selecting between these algo-
rithms depends on tolerance for missed cases and avail-
able NAAT capacity. For programs intended to minimize 
NAAT volume, algorithms (B) Ag Only, (C) NAAT Confir-
mation for Sx/Ag-neg & Asx/Ag-pos, and (E) Repeat Ag for 
Ag-neg are most preferable; selecting between these algo-
rithms depends on tolerance for missed cases and avail-
able NAAT and antigen test capacity. Predictive values 
(Supplementary Figure S1) can also provide key indica-
tors of algorithm performance, particularly for individual 
and clinical decisions; however, programs should inter-
pret predictive values with caution as algorithms with 
high predictive values may still result in unwanted out-
comes (e.g., large numbers of missed cases) at the popu-
lation level.

Each algorithm evaluated in this analysis is rooted 
in strategies currently recommended by public health 
organizations [except for (A) NAAT Only, an idealized 
baseline]. Each strategy recommended is articulated 
with important nuances; algorithms analyzed here are 
intended to be analogous to, but not exact reproductions 
of these strategies. Guidance from WHO and ECDC 
distinguishes strategies for antigen testing in communi-
ties with low and high prevalence of SARS-CoV-2 infec-
tion. In high prevalence settings, WHO recommends 
considering repeat antigen testing for those with nega-
tive results [7], analogous to (E) Repeat Ag for Ag-neg; 
ECDC indicates that negative tests should be confirmed 
with RT-PCR [8], analogous to (D) NAAT Confirmation 
for Ag-neg. In low prevalence settings following nega-
tive antigen results, WHO recommends clinical evalua-
tion for suspect cases in lieu of confirmatory NAATs [7], 
analogous to (B) Ag Only; ECDC does not recommend 
antigen testing for asymptomatic persons and recom-
mends confirmatory RT-PCR for symptomatic persons 
with positive antigen results [8], analogous to (F) NAAT 
for Asx & Sx/Ag-pos. CDC interim guidance recommends 
a unified strategy for testing across settings analogous to 
(C) NAAT Confirmation for Sx/Ag-neg & Asx/Ag-pos [5].

This decision analysis approach necessarily simplifies 
complex factors that may impact SARS-CoV-2 testing 
programs, and therefore results may not be represent-
ative of all testing programs. Our analysis does not 
account for individual-level variations (except symp-
tom status) in test performance, such as patient age or 
sex. (However, empirical data indicate that these fac-
tors are not associated with significant differences in 
test performance [19]). This analysis is intended to 
be representative of community-based testing rather 
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than facility-based serial testing (where each person is 
tested on a recurring basis). Our results would therefore 
overestimate the numbers of missed cases and testing 
volumes in serial testing programs. This analysis also 
does not evaluate dynamic transmission-related out-
comes intrinsic to the intervention (as a consequence of 
detected/missed cases) which have been evaluated pre-
viously [20, 21]. Finally, this decision analysis approach 
is used to estimate expected outcomes under a theo-
retical perfect implementation of each algorithm to 
highlight the fundamental distinctions between testing 
algorithms (independent of implementation challenges). 
As a decision analysis model, our approach allows for a 
standardized comparison of the performance of all algo-
rithms and, while specific settings or populations may 
differ from the one modeled, our conclusions about the 
relative benefits of each algorithm are portable for pro-
grammatic decisions across settings.

The results of our analysis are dependent on the 
accuracy and generalizability of the input parameter 
estimates used. Several reports have described the per-
formance characteristics of several antigen tests, with 
comparable results across reports [12–18]. Programs 
implementing antigen tests with performance charac-
teristics substantively different from the distributions 
described in Table  1 are likely to have different num-
bers of missed cases, depending on the assay’s sensitiv-
ity. (This may include the influence of vaccination, as 
there is limited current evidence of the performance 
of antigen tests among vaccinated individuals.) Addi-
tionally, as variants of SARS-CoV-2 virus continue to 
emerge, the sensitivity of antigen tests for detecting 
prevalent variants may have a substantial impact on the 
performance of algorithms implementing antigen tests; 
however, early reports have found antigen tests perform 
similarly across multiple different SARS-CoV-2 variants 
[22]. However, only one report to date has evaluated 
the performance of immediate repeat antigen test-
ing [13] and this may not be representative of settings 
where immediate repeat antigen testing performs with 
higher sensitivity. Importantly, this parameterization 
does not reflect the sensitivity of delayed repeat anti-
gen testing (e.g. as recommended by ECDC for confir-
mation of negative results after 2-4 days when RT-PCR 
capacity is limited [8]). Finally, we adopted a simplify-
ing assumption that NAATs have 100% sensitivity and 
specificity as NAATs are typically considered the “gold 
standard” for diagnosis of SARS-CoV-2 infection. How-
ever, NAATs may have lower sensitivity early in the 
course of infection [23] and remain positive during a 
patient’s post-infectious recovery [24]. Therefore, in our 
approach the prevalence among persons seeking testing 

is representative of currently and recently infected per-
sons detectable by NAATs at the time of testing and 
some “missed cases” in this approach may represent 
post-infectious persons still detectable by NAAT.

Conclusions
Our results provide the first quantitative comparison 
of the expected performance of different strategies for 
community-based SARS-CoV-2 testing programs rec-
ommended by public health organizations. None of the 
algorithms evaluated in this analysis is likely to be opti-
mal in all settings and for all programmatic priorities, 
and this analysis provides a framework for selecting 
setting-specific strategies to achieve an acceptable bal-
ance and trade-offs between programmatic priorities 
and constraints. As global responses to the COVID-
19 pandemic continue to evolve and adapt, our results 
contribute to the body of evidence informing SARS-
CoV-2 testing strategies.
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