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Abstract

Background: Colorectal cancer (CRC) disparities vary by country and population group, but often have spatial
features. This study of the United States state of Virginia assessed CRC outcomes, and identified demographic,
socioeconomic and healthcare access contributors to CRC disparities.

Methods: County- and city-level cross-sectional data for 2011–2015 CRC incidence, mortality, and mortality-
incidence ratio (MIR) were analyzed for geographically determined clusters (hotspots and cold spots) and their
correlates. Spatial regression examined predictors including proportion of African American (AA) residents, rural-
urban status, socioeconomic (SES) index, CRC screening rate, and densities of primary care providers (PCP) and
gastroenterologists. Stationarity, which assesses spatial equality, was examined with geographically weighted
regression.

Results: For incidence, one CRC hotspot and two cold spots were identified, including one large hotspot for MIR in
southwest Virginia. In the spatial distribution of mortality, no clusters were found. Rurality and AA population were
most associated with incidence. SES index, rurality, and PCP density were associated with spatial distribution of
mortality. SES index and rurality were associated with MIR. Local coefficients indicated stronger associations of
predictor variables in the southwestern region.

Conclusions: Rurality, low SES, and racial distribution were important predictors of CRC incidence, mortality, and
MIR. Regions with concentrations of one or more factors of disparities face additional hurdles to improving CRC
outcomes. A large cluster of high MIR in southwest Virginia region requires further investigation to improve early
cancer detection and support survivorship. Spatial analysis can identify high-disparity populations and be used to
inform targeted cancer control programming.
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Background
Globally and in the United States (U.S.), colorectal can-
cer (CRC) is the third most common cause of cancer in-
cidence and the second highest cause of cancer death
[1–3]. Epidemiological patterns and risk factors vary

within and among countries and regions of the world.
Lifestyle-based risk factors such as diet and smoking
vary greatly, as well as preventive measures such as
screening test access and mass education campaigns [3].
Disparities in CRC refer to population subgroups that
experience worse outcomes due to social, economic,
other factors that impede their access to preventive ser-
vices or to practice healthy lifestyles [4]. Though the
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characteristics and risk factors of groups experiencing
CRC disparities can vary by place, studying and measur-
ing disparities is important for informing efforts to im-
prove health equity.
In the U.S., disparities in CRC incidence and mortality

are associated with population characteristics, such as
racial and ethnic minority status, low socioeconomic sta-
tus (SES), rural residence, and lack of access to health-
care [5, 6]. African Americans (AA) have higher rates of
cancer-related mortality than whites; this gap has grown
even with mortality rates decreasing overall [7]. Popula-
tions residing in low SES counties (geographic state sub-
divisions) have significantly higher CRC mortality than
middle or high SES counties [5]. Rural-dwelling popula-
tions also have higher CRC incidence than urban popu-
lations across most of the U.S., with mortality rates
falling at a slower rate [8]. Improved CRC screening
rates for CRC is the leading factor in CRC mortality re-
ductions [9]. However, lack of access to primary care
providers (PCPs) and gastroenterologists (GIs) is associ-
ated with lower screening rates [10, 11].
In the U.S. state of Virginia, the CRC incidence and

mortality rates (36.0 and 14.0 per 100,000, respectively)
are slightly more favorable than national estimates (39.2
and 14.5 per 100,000, respectively) [12]. However, CRC
county-level rates reveal wide variability, with incidence
rates ranging from 22.7 to 70.0 per 100,000 and mortal-
ity rates from 8.2 to 32.5 per 100,000 [13]. Nationally,
county-level incidence ranges 12.4 to 138.6 per 100,000
and mortality ranges 5.0 to 45.1 per 100,000 [12]. State-
wide variations in the rates of CRC risk factors highlight
the complexities of understanding their contributions to
disease disparities. For example, the Appalachian south-
west region of Virginia is very rural and has high poverty
rates but has a low proportion of AA residents [14]. In
contrast, the southeast region has higher densities of AA
residents with a wide mix of rural-urban and SES status
[14]. Previous studies have applied spatial analysis to
understand how these underlying factors impact dispar-
ities and outcomes for prostate and breast cancer in Vir-
ginia [15, 16]. However, no known spatial analysis study
has focused on CRC disparities in Virginia.
In addition to age-adjusted incidence and mortality

rates, the mortality-incidence ratio (MIR) is a useful in-
dicator possible cancer disparities. As a simple calcula-
tion of mortality rate divided by incidence rate from a
simultaneous time period, a higher MIR indicates that
more disease-related deaths occurred even if incidence
remained steady [17]. MIR is not a direct measure of the
likelihood that an individual diagnosed with cancer will
survive [18]. However, differences in MIR across a popu-
lation or region can indicate lack of healthcare access for
cancer screening to find cancer in early stages, lack of fa-
cilities to treat cancer, or less effective survivorship care

[19]. For example, in one study the amount of access to
primary care through federally qualified health centers
was found to significantly predict the MIR observed for
breast, cervical, and prostate cancers, though non-
significant results were found for CRC [20]. However, a
multi-nation study found MIR for CRC to be predicted
by healthcare access and quality [17].
Hotspot analysis is a method to identify regional dispar-

ities by detecting spatial clusters in which adjacent loca-
tions share high values, such as cancer incidence. Going
beyond simply ranking high values by locality, hotspot
analysis identifies regional patterns with multiple adjacent
localities where disparities may be harder to overcome
without traveling long distances. Hotspot analysis has
been used internationally, such as a Brazilian study of
CRC and an Iranian study of breast and prostate cancer
[21, 22]. Examples from the U.S. include a U.S. national
study to identify county clusters of high mortality rates [6]
and a state-level study in Florida to identify areas with
high rates of late-stage diagnoses [23].
Spatial regression and geographically weighted regres-

sion (GWR) provide a unique means of understanding as-
sociations between variables. In Tobler’s first law of
geography, “everything is related to everything else, but
near things are more related than distant things” [24]. In
addition to identifying clusters, these spatial methods can
also test for “non-stationarity” or the extent that relation-
ships between variables, such as poverty and cancer inci-
dence, vary geographically, though not necessarily by
proximity [25]. Investigating spatial non-stationarity
through analyses, such as GWR, can better identify the
relative importance of each factor in a given region [26].
Spatial regression and GWR have been used to analyze
disparities in CRC in international settings [27–29] and
other cancer types in U.S. states and metropolises [15, 26,
30]; however, few such analyses have focused on CRC in
the U.S.
The aim of this study is to assess CRC disparities in

Virginia by (1) identifying locality-level clusters of high
CRC incidence, mortality, and MIR and (2) describing
spatial dynamics of demographic, socioeconomic, and
healthcare access contributors to CRC disparities. This
study can inform public health practitioners and health-
care administrators about populations and regions that
could benefit from targeted CRC prevention, detection,
and treatment programs.

Methods
Data sources and variables
Data at the county (n = 95) or city (n = 38) level were
used in this study. Virginia’s independent cities have ad-
ministrative boundaries separate from counties and are
considered equivalent to counties in the U.S. Census
[31]. The range in population for counties and cities is
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2212 to 1,148,433 and 3936 to 450,435, respectively [32].
For the purposes of this study, the term “locality” is used
to comprise both counties and independent cities.
Included in the analysis are three variables reflecting

CRC outcomes: (1) incidence [12], (2) mortality [12],
and (3) MIR [19]. Six independent variables included: (1)
proportion of AA residents [32], (2) rural-urban status
[33], (3) SES index [34], (4) CRC screening rate [35], (5)
PCP density [36], and (6) GI density [36]. Table 1 pro-
vides definitions, data sources, and details for the vari-
ables. The most recent years of CRC data, 2011–2015,
were used. Data for other variables were selected to
overlap in timeframe with the CRC data when possible.
However, for SES index the 2017 dataset was the closest
available year [34], and CRC screening data were avail-
able only for 2008–2010 [35]. Data for independent vari-
ables were available for all 133 localities.
In all analyses, models were fit using complete case

analysis, where localities with missing data (n = 6 for in-
cidence, n = 30 for mortality, and n = 30 for MIR) for in-
cidence, mortality, or MIR were excluded from their
respective analyses. The cause of missing data was

suppression of low counts for localities in the dataset,
due to concerns for confidentiality and reliability [12].

Getis-Ord GI* hotspot detection
A hotspot analysis was performed to identify spatial
clustering of localities with high or low values for inci-
dence, mortality, and MIR. These spatial clusters were
calculated using the Getis-Ord GI* statistic (ArcGIS 10.4
software), which produces a Gi* statistic (z-score) and p-
value assessing high (i.e., hotspot) or low (i.e., cold spot)
spatial clustering, as described by Getis and Ord [37]. A
pseudo-Plate Carrée linear map projection was used.
Two parallel analyses compared results from the sample
of Virginia localities only and a sample that included
Virginia localities plus adjoining counties in bordering
states. Since the results and interpretations were remark-
ably similar, only the results for the Virginia localities
are presented here.
A False Discovery Rate (FDR) was applied to correct

for multiple testing [38] to ensure that the rate of false
positives in all tests chosen as significant would be at or

Table 1 Variable definitions, sources and measures and characteristics of the Virginia localities

Variable
Name

Variable
Type

Data Source; details Measure Mean
[Minimum,
Maximum]

Incidence Outcome State Cancer Profiles 2011–2015 [12]; annual estimate of
invasive cancer diagnoses with 95% confidence interval.
Age adjusted incidence based on 2000 US standard
population.

Annual CRC diagnoses per 100,000 population 39.4
(22.7,70.0)

Mortality Outcome State Cancer Profiles 2011–2015 [12]; annual estimate of
CRC attributable deaths with 95% confidence interval.
Age adjusted incidence based on 2000 US standard
population.

Annual CRC deaths, per 100,000 population 16.5
(8.2,32.5)

Mortality-
incidence
ratio (MIR)

Outcome CRC mortality rate divided by incidence rate for each
locality for which both data points were available

Ratio expressed as decimal 0.43
(0.26,1.08)

AA
population

Independent Racial category in US Census data 2010 [32] Percent of population 18.9
(0.10,79.10)

Rural-urban
status

Independent US Department of Agriculture Economic Research Service
2013 [33]; Rural Urban Continuum Codes based on urban
population within locality and adjacency to other
metropolitan areas

Ordinal scores 1–9; 1–3 are metropolitan, 4–9
are non-metro

3.72 (1,9)

SES index Independent Appalachian Regional Commission 2017 [34]; composite
index of unemployment, per capita income, poverty.

Index value based on 100 as US average; lower
index indicates higher SES

101.6
(47.2166.7)

CRC
screening
rate

Independent Small Area Estimates 2008–2010 [35]; estimates based on
Behavioral Risk Factor Surveillance Survey question on
self-reported previous screening.

Percent of population 63.1
(33.2,88.8)

PCP density Independent HRSA Area Health Resource Files 2011–2015 [36]; count
for each year by locality

PCPs per 100,000 population; sum of PCPs for
each year, divided by locality population for
each year, then multiplied by 100,000

61.9
(0,323.2)

GI density Independent HRSA Area Health Resource Files 2011–2015 [36]; count
for each year by locality

GIs per 100,000 population; sum of GIs for each
year, divided by locality population for each
year, then multiplied by 100,000

2.7 (0,43.3)
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lower than a set level. An FDR of 10% was used in the
analysis. Although this criterion may not be as stringent
as an FDR criterion of 5%, it is a more conservative ap-
proach than choosing the hotspots based on unadjusted
p-values [39].

Multivariate and spatial regression
Regression analyses were used to assess the contribu-
tions of the independent variables to the CRC outcomes.
A linear regression was run as a preliminary step, to pro-
vide residuals for a test of spatial autocorrelation prior
to spatial regression. The two spatial analyses, spatial re-
gression and GWR, incorporated spatial autocorrelation
into their models.

In the multivariate linear analyses, the three outcome
variables (incidence, mortality, and MIR) were treated
separately as a function of five predictors: proportion of
AA residents, rural-urban status, SES index, CRC
screening rate, and PCP density. The GI density variable
was dropped from the analysis to avoid collinearity [40]
because its high correlation (~ 0.80) with PCP density.
The residuals in the linear regression were then ana-

lyzed for spatial autocorrelation. Moran’s I and Geary’s
C tests were performed to determine if spatial autocor-
relation was present [41]. Clustering statistics suggested
spatial autocorrelation was present for incidence
(Geary’s C p = 0.0137, Moran’s I < 0.0001) and highly de-
tectable for MIR (Geary’s c and Moran’s I p < 0.0001).

Fig. 1 Distribution of independent variables across Virginia counties and cities; choropleth maps with values displayed as quantiles. Crosshatch
marks in Incidence, Mortality, and MIR indicate areas with missing data. Map created by the authors, using ArcGIS 10.4 licensed to University
of Virginia
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As such, the regression model was extended to incorpor-
ate spatial autocorrelation. PROC MIXED in SAS was
used to specify the covariance matrix, using the syntax
described in Xu et al. [41], and using as geographical in-
puts the county centroid latitude/longitudes [42].
Next, GWR was used to assess for spatial non-

stationarity between variables by testing whether the re-
gression coefficients of the linear regression vary as a
function of geography (i.e. β(x,y) as compared to β,
where x,y are geo-coordinates) [43]. A semi-parametric
GWR approach, in which the variables with locally vary-
ing coefficients were selected while holding other vari-
able coefficients to be constant, was selected as offering
the most parsimonious models and simplified interpret-
ation. Locally varying coefficients were identified based
on Akaike Information Criterion model fit. Maps display
significant findings of local coefficients for each outcome
variable (Fig. 3). Colors in the maps represent smoothed
values of the non-stationary parameters presented over
the geographical region. Red indicates a more positive
relationship between the independent and outcome vari-
able, while blue indicates a more negative relationship.
In all cases, these parameters were geographically vary-
ing regression weights illustrating the local level of asso-
ciation between predictor and outcome.

Results
The statewide distributions of each variable are pre-
sented as choropleth displays in Fig. 1. In visual estima-
tion, incidence had higher rates in the central and
eastern regions, and pockets of low rates in the northern
and southwest regions. Patterns of high mortality were
observed in the southwest and south-central regions. For
MIR, a high rate was concentrated in the southwest re-
gion. The proportion of AA population was highest in
the south-central and southeast portions of the state,
and lowest in the southwestern areas. With major cities
in the northern and eastern parts of the state,

widespread rurality was more pronounced in the south-
west and south-central regions, as well as near the east-
ern seaboard. SES index tended to be lowest in
southwest and south-central regions, and highest in
northern Virginia. PCP density and CRC screening rates
had varying values but without a visible pattern of
distribution.
Figure 2 displays hot and cold spots for each of the

outcome variables. For incidence, a hotspot was detected
in the rural south-central part of the state (p < 0.10).
Two cold spots were detected, in the far southwest cor-
ner (p < 0.10) and in the northern area near Washington
DC (p < 0.10). For mortality, no hotspots or cold spots
were detected. The MIR detected a single, large hotspot
encompassing the southwest corner (p < 0.01).
Table 2 shows the regression parameter estimates be-

tween the independent variables and the three CRC out-
come variables. Adjusting for all predictors, all three
overall models were significantly predictive (p < 0.001).
In relation to incidence, the only significant single pre-
dictor was proportion of AA residents (p < 0.0001), such
that an increased proportion of AA coincided with in-
creased CRC incidence. For mortality, rural-urban status
was a significant predictor (p = 0.018), indicating that in-
creased rurality was associated with increased mortality.
SES index was also significantly associated (p = 0.004),
with lower SES index associated with higher mortality.
For MIR, the only significant variable in the model was
SES index (p = 0.004), indicating that lower SES index
was associated with higher MIR.
For the spatially correlated regression (Table 2), the

overall models for incidence and mortality were significant
(p < 0.001), while the MIR model was not (p = 0.142). For
incidence, an increased proportion of AA population (p =
0.002) and increased rurality status (p = 0.018) had signifi-
cant positive associations. In terms of mortality, increased
rurality status (p = 0.024) and lower SES index (p = 0.007)
had significant positive associations.

Fig. 2 Getis-Ord GI* hotspot maps of CRC incidence, mortality, and mortality-incidence ratio (MIR). Map created by the authors, using ArcGIS 10.4
licensed to University of Virginia
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Table 2 Multivariate and spatially correlated regression model estimates for CRC incidence, mortality, and MIR

Linear Model with independent errors Spatially Correlated Model

Beta Std Err Std Beta p-value Beta Std Err Std Beta p-value

Incidence

Intercept 35.87 8.24 39.3 <.000 28.90 10.32 35.38 0.008

Rural-urban status 0.560 0.334 1.57 0.094 0.700 0.289 1.95 0.018

CRC screening rate −0.046 0.109 −0.35 0.675 0.020 0.113 0.16 0.859

AA population 0.206 0.049 3.45 <.001 0.230 0.073 3.86 0.002

PCP density −0.008 0.013 −0.42 0.558 − 0.015 0.015 − 0.83 0.310

SES index 0.008 0.031 0.24 0.790 −0.008 0.048 −0.23 0.869

Overall Test p-val < 0.001 < 0.001

Mortality

Intercept 10.91 5.184 16.63 0.035 10.91 5.34 16.63 0.044

Rural-urban status 0.398 0.168 1.12 0.018 0.398 0.173 1.12 0.024

CRC screening rate −0.013 0.064 −0.10 0.834 −0.013 0.068 −0.10 0.842

AA population 0.047 0.025 0.79 0.063 0.047 0.024 0.79 0.050

PCP density −0.013 0.008 −0.71 0.089 −0.013 0.008 −0.71 0.119

SES index 0.049 0.017 1.44 0.004 0.049 0.018 1.44 0.007

Overall Test p-val < 0.001 < 0.001

MIR

Intercept 0.068 0.141 0.43 0.633 0.329 0.181 0.51 0.085

Rural-urban status 0.006 0.007 0.02 0.360 0.008 0.004 0.02 0.085

CRC screening rate 0.003 0.002 0.02 0.126 0.002 0.002 0.01 0.332

AA population −0.001 0.001 −0.02 0.129 0.001 0.001 0.02 0.208

PCP density −0.0002 0.0003 −0.01 0.357 −0.0001 0.0002 −0.01 0.566

SES index 0.002 0.001 0.05 0.004 0.0003 0.001 0.01 0.085

Overall Test p-val < 0.001 0.142

Std Err Standard error, Std Beta Standardized beta coefficient

Fig. 3 Geographically weighted regression local coefficients. Red indicates more positive relationship between independent and outcome
variables; blue indicates more negative relationship. Map created by the authors, using ArcGIS 10.4 licensed to University of Virginia
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Under the GWR model, non-stationarity was observed
in the varying strength of association between variables.
The association between percentage of AA population
and incidence was found to vary geographically but re-
main positive (GWR local betas from 0.14–0.52, me-
dian = 0.24), with a stronger association in southwestern
Virginia compared to the rest of the state (Fig. 3). The
association of SES index with mortality was found to
vary geographically and in the same direction (GWR
local betas from 0.032 to 0.049, median = 0.034) such
that SES was a stronger predictor of mortality in south-
western Virginia, than other regions. Similarly, the asso-
ciation of PCP density with mortality was found to vary
geographically in the same direction of increasing PCP
supply with decreasing mortality (GWR local betas from
− 0.019 to − 0.006, median = − 0.009). The effect of PCP
supply on mortality was strongest in southwestern Vir-
ginia and weakest in central Virginia. For rural-urban
status, the GWR model detected geographical variation
in its association with MIR in varying directions (local
betas from − 0.014 to 0.007, median − 0.002) with posi-
tive associations in the eastern seaboard and southwest,
and negative associations in central Virginia, suggesting
that increasing rurality was associated with increasing
MIR in the eastern and southwestern regions of the state
but decreasing MIR in the central part.
Summarizing results for incidence, the hotspot in

south-central Virginia represents a rural and lower SES
region with a high proportion of AA population relative
to other regions. The cold spots for incidence were
found in two widely contrasting regions including south-
west Virginia as rural with high poverty and mostly
white residents, and the northern region as urban, more
racially diverse and one of the wealthiest parts of the
state [14]. Of the independent variables, increasing rural-
ity and proportion of AA residents were positively asso-
ciated with incidence. Rural-urban status association was
significant in the spatial regression, while the proportion
of AA residents was significant in the linear and spatial
regression model. The GWR model for CRC incidence
showed a stronger association for the proportion of AA
residents in the western part of the state.
For mortality, no significant hotspots were identified.

However, relative to the state average, locality-level mor-
tality rates were generally higher in the southwest region
and lower in the northern region. Lower SES index was
associated with increased mortality in the linear and
spatial regressions. The GWR indicated non-stationarity
of this association, showing a stronger association be-
tween SES index and mortality in southwestern VA.
Rurality was also associated with increased mortality in
the linear and spatial regression models. PCP density in
association with mortality was found to be non-
stationary in the GWR local coefficient, indicating that

an inverse association was stronger in southwestern Vir-
ginia and weaker in the central regions.
For MIR, a large and strongly significant hotspot was

found in southwestern Virginia. The GWR found the as-
sociation of rurality and MIR to be non-stationary, with
stronger positive associations in the southwestern and
eastern edges of the state, and slightly negative associa-
tions in the central regions. Low SES was associated with
higher MIR in the linear but not the spatial regression.

Discussion
This study found disparities in CRC outcomes in the
southwest and south-central regions of Virginia, and that
key factors of disparities are rurality, low SES index, and
high proportion of AA population. An important finding
from our study is that the strength of the association of
SES index, race, and PCP density with both incidence
and mortality varies across regions of the state. Likewise,
rurality was linked to both increased and decreased mor-
tality depending on region. Collectively, findings indi-
cated that many risk factors for CRC incidence or
mortality may gain or lose strength on a regional basis,
perhaps by combining with other factors or even as a re-
sult of community-level interventions. Future studies
could assess CRC prevention and control services in re-
lation to risk factors and outcomes.
The MIR hotspot in southwestern Virginia was con-

cerning in terms of potential widespread disparities in
access to the continuum of cancer care from detection
through treatment. The finding of a cluster of low CRC
incidence (a cold spot) in an overlapping location was
unexpected and does not reflect other studies finding in-
cidence disparities in rural and especially in Appalachian
regions. Previous studies of cancer disparities comparing
Appalachian and non-Appalachian populations have
found higher overall cancer incidence in Appalachian
populations [44, 45] as well as higher CRC incidence
[44]. However, a Virginia state cancer report found
southwestern health districts had relatively low incidence
but high mortality as well as poor rates of detecting can-
cer at an early stage [13]. Low incidence with high mor-
tality, as denoted by the MIR, could indicate lack of
early diagnosis and under-diagnosis, possibly due to low
CRC screening rates. Additional assessment is warranted
to better understand the dynamics of low incidence rates
and high MIR in southwest Virginia. The use of spatial
hotspot analysis bolstered evidence that regions with
concentrations of social or economic disadvantage may
face additional hurdles to improving CRC outcomes. A
national CRC mortality study found hotspots occurred
in regions characterized by poverty, rurality, and/or high
proportion of AA residents [6]. The current study added
depth to the understanding of these geographic
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disparities through state-level analysis of incidence, mor-
tality, and MIR.
The associations of population characteristics with CRC

outcomes reinforced previous studies. Rurality and low
SES index were predominant factors in CRC mortality.
Both of these population types are characterized by social
and structural barriers to cancer prevention and accessing
healthcare services along the cancer control continuum
[46–48]. The finding of higher incidence among popula-
tions with greater proportions of AA residents bears fur-
ther assessment of local risk factors. However, this finding
is also reflective of larger trends of obstacles to healthcare
access among AA populations such as lower average SES
status than white populations and higher levels of distrust
in healthcare organizations [49–51].
The more proximal factors of health care access, PCP

density and CRC screening rates, offered additional in-
sights. The finding that PCP density had a stronger nega-
tive association with mortality in southwest Virginia
compared to the central region is consistent with other
studies noting the important role of PCPs in cancer
screening and care access, particularly in rural areas where
specialists are less accessible [20, 52, 53]. It is notable that
CRC screening rate itself was not associated with any of
the CRC outcome variables. Previous studies have found
strong evidence that screening rates are associated with
lower rates of both incidence and mortality and that
implementing screening programs results in reductions in
these outcomes [44, 54, 55]. Rurality has also been associ-
ated with lower screening rates in a national study [56].
The Behavioral Risk Factor Surveillance Survey (BRFSS),
the source for screening rates in the current study, might
also be a factor. A past study found BRFSS responses over-
estimated CRC screening rates compared to other surveys
[57], and another Virginia-based study using BRFSS pros-
tate cancer screening data also found no association with
prostate cancer incidence [16].
The non-stationarity results in this study indicate that

a “one-size-fits-all” approach may not be ideal due to
variations in the strength of association between popula-
tion characteristics and CRC outcomes. Rather, these re-
sults provide new insight on local or regional solutions
that could help improve cancer outcomes in high-
disparity parts of the state (Fig. 3). For example, in-
creased access to PCPs in the southwestern region could
have a larger effect on CRC mortality. Similarly, the re-
sults suggest that programs to improve low SES individ-
uals’ access to early detection and treatment could have
greater impact on mortality in the southwestern region.
Non-stationarity analysis can also shed light on geo-
graphic areas and population characteristics for whom
targeted cancer interventions might have greater impact.
A previous study found that strength of the association
of area-based economic deprivation and later stage

breast tumors was place-specific and was stronger in the
Appalachian regions of Pennsylvania than in either Ohio
or Kentucky [30]. Other non-stationarity studies include
an analysis of U.S. prostate cancer mortality that found
urologist availability had stronger association in certain
regions [58], and a English study that found regions with
stronger associations between low SES and cervical can-
cer incidence [59]. Identifying associations that have
spatial variability is important for selecting data analysis
approaches that yield more precise results.
There are limitations in this study. The use of eco-

logical data rather than individual-level data increases
the likelihood of erroneous findings, due to aggregations
of population data that do not accurately reflect the
characteristics or travel patterns of individuals in those
localities. Yet, as all the data used in this study were
publicly available, this study provides an example for
population health programs wishing to conduct spatial
analyses but unable to access individual-level data. Avail-
able data for CRC screening estimates were older than
incidence and mortality data, causing potential errors in
analyzing associations. The missing data, particularly for
mortality and MIR, may have caused errors in analyses.

Research and practice implications
The spatial methods used in this study can be replicated
in other geographic settings to elucidate some of the
complex factors of CRC outcomes. Future spatial ana-
lysis using individual-level, rather than locality-level,
CRC data can add to understanding of statewide popula-
tions and regions in Virginia at risk for cancer dispar-
ities. Future analyses should also include variables more
proximal to cancer outcomes, such as late-stage diagno-
sis, statewide availability and accessibility of cancer
screening, and specialist treatment resources. Further re-
search is needed to understand the low incidence rates
in the otherwise health disparate southwest Virginia re-
gion, especially whether this is due to under-detection,
and to explore the lack of association between CRC
screening rates and outcomes.
Practitioners can use this study’s findings to target

programs and policies to specific regions and adapt in-
terventions to better meet the needs of high-disparity
population groups. For example, programs and policies
to lower cost barriers to CRC screening and treatment
should be targeted to low SES populations. Programs for
CRC prevention and early screening should be tailored
and targeted to effectively reach AA populations. Simi-
larly, outreach programs should be tested and adapted
for implementation in rural communities [60]. For areas
with high MIR, programs and policies should target in-
creased access to PCPs, screening, early detection, and
CRC treatment specialists.
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Conclusions
This study of the U.S. state of Virginia found that rural-
ity, low SES index, proportion of AA population, and
low density of PCPs were associated with CRC outcome
disparities. The strength of associations varied spatially,
indicating addressing risk factors in areas with stronger
associations may yield greater impact on CRC outcomes.
Spatial analyses such as hotspot clusters and non-
stationarity are important for understanding nuanced at-
tributes of risk factors for CRC.
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