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Abstract

Background: The objective of this study was to detect the urinary levels of dimethoate, benzo(a) pyrene (BaP), and
bisphenol A (BPA) in first-year Hohai University students with different geographic origins.

Methods: First-morning urine samples were collected from 540 healthy freshmen aged 17 to 19 years. Chemical
levels were measured using β-glucuronidase hydrolysis followed by a high-performance liquid chromatography-
tandem mass spectrometry-based method. Geometric means (GMs) of these three chemicals are presented by
body mass index (BMI) and location in a volume-based and creatinine-standardized way.

Results: GM concentrations of omethoate, BPA and 3-OHBaP were 9.47 μg/L (10.80 μg/g creatinine), 3.54 μg/L
(4.04 μg/g creatinine) and 0.34 ng/L (0.39 ng/g creatinine), respectively. The GM concentration of omethoate in
males was significantly higher than that in females. The individuals with a BMI higher than 23.9 had higher GM
concentrations of omethoate, BPA, and 3-OHBaP. The inhabitants of Southwest China had significantly lower GM
concentrations of omethoate, BPA, and 3-OHBaP than those who lived in other locations in China.

Conclusion: The average level of environmental chemical accumulation in freshmen is lower in Southwest China
and differs in youth who live in different regions. In addition, obesity is correlated with higher toxin levels in youth.
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Introduction
Pollution of air, water, and food has been increasing as a
consequence of global climate change, pesticide misuse,
and industry development [1]; thus, the negative effects
of environmental pollution on human health have re-
cently become a serious concern. Inevitably, humans are
exposed to pollutants such as heavy metals, pesticide
residues, polycyclic aromatic hydrocarbons (PAHs), and
bisphenol A (BPA) through drinking water, food, dust,
and ambient air [2], and exposure to these pollutants is
tightly linked to the initiation and progression of mul-
tiple diseases [3].
China is one of the largest agricultural countries in the

world, with > 300,000 tons of agricultural pesticides used
annually [4]. Dimethoate, one of the most commonly
used organophosphorus pesticides, is widely used for
broad-spectrum control of a wide range of insects,
including mites, flies, aphids, and plant hoppers [5].
Overuse of dimethoate can lead to large amounts of
residue on fruits, vegetables, and grains [6]. Existing
research has confirmed that even very low levels of di-
methoate may have adverse health effects that mainly in-
clude neurotoxicity [7–9] and potential carcinogenesis
[10–12]. The extensive industrial development model
has made China fall into an “environmental pollution–
economic development” cycle [13]. PAHs, which origin-
ate from diverse sources, including petrochemical
products and the combustion of fossil fuels, are
pervasive pollutants characterized by their hazardous
carcinogenic and mutagenic potential, and these
pollutants exist not only in the air but also in food and
drinking water [14, 15]. Benzo(a) pyrene (BaP) is one of
the most studied PAHs classified by the International
Agency for Research on Cancer (IARC) as a Group 1
carcinogen [16]. Multiple studies have shown that BaP
requires metabolic activation to exert its carcinogenic
effects [17, 18]. It was reported that a higher incidence
of forestomach tumors was observed when B6C3F1 mice
were exposed to BaP via diet in a long-term study [19].
BPA is a synthetic plasticizer, of which more than 8
million pounds are produced worldwide each year, and
BPA can be found from plastic bottles and medical
devices to the coating of food packages [20]. Likewise,
there is growing evidence that BPA may adversely affect
human health. Several studies have demonstrated that
BPA has negative effects on human reproduction, in-
cluding female fertility [21], male sexual function [22],
sperm quality [23], etc. Moreover, BPA has an impact
on gene expression processes, such as the function of
enzymatic proteins, which play important roles in
fetal development [24]. In addition, an in vitro study
showed that metabolic syndromes such as type 2
diabetes, nonalcoholic fatty liver disease, and obesity
are also associated with BPA [25].

Different subjects originating from distinct parts of the
country may reflect the environmental exposure in their
region. It was reported that the blood Pb levels of the
populations who live in Wuhan, central China, were
lower than those in Beijing [26]. It was also reported that
healthy Chinese individuals who live in areas near man-
ganese mines or nonferrous metal mines have a signifi-
cantly higher urinary manganese level than those who
live in other regions [27]. Another study showed that
higher urinary levels of As and Cd were observed in the
Wuhan population than in populations in other coun-
tries [28]. In addition to the geographic distributions, a
preliminary study reported that the hair and urinary
aluminum levels in obese subjects were 31 and 46%
higher than those in the healthy group, respectively [29].
Hohai University (former Hohai Civil Engineering

School of China, established in 1915, HHU) is a national
key university under the direct administration of the
Ministry of Education. As a comprehensive university
with at least 20 colleges, this school enrolls more than
tens of thousands of students each year from every prov-
ince in China. Before entering university, the lifestyle of
high school students is relatively unitary during the
nearly 10-year study period at the place of birth. It
should be considered that environmental background
may have a significant effect on long-term health effects.
It is meaningful to detect the level of environmental
chemical and toxin exposures, which could reflect the
local environment and impact individual health. In
addition, environmental exposure markers of dimethoate
[30], BaP [31, 32], and BPA [33] can be easily detected
in blood and urine. In this study, we chose 3 kinds of
very common pollutants in the Chinese environment to
represent the exposure levels of pollutants in young
Chinese people aged 17 ~ 19 years.
Therefore, the objective of the present study was to

provide baseline information on the levels of dimethoate,
BaP, and BPA in urine samples from first-year Hohai
University students with different geographic origins and
to assess the correlation between the level of pollutant
exposure and geographic origin and BMI at baseline.
More importantly, this study will facilitate the improve-
ment of the overall health level of Chinese people by
advocating for a healthier lifestyle and providing sugges-
tions for environmental protection policies.

Materials and methods
Study design and participants
All procedures, including sampling and examination,
were performed in agreement with the principles set
forth in the Declaration of Helsinki and its later amend-
ments (2013). All examinees were invited to participate
and voluntarily took part in the present study. All sub-
jects were informed about the objectives of the study

Xu et al. BMC Public Health         (2021) 21:1692 Page 2 of 10



and experimental procedures and signed the informed
consent form. The study protocol was reviewed and ap-
proved by the Ethical Review Committee of Sir Run Run
Hospital, Nanjing Medical University (2019-SR-018).
A total of 540 freshmen attending the HHU originat-

ing from East (n = 319), Northeast (n = 10), North (n =
85), Northwest (n = 41), Southwest (n = 43), and South
(n = 42) China were enrolled in the present study
(Table 1); there were 253 males and 287 females aged
from 17 to 19 years. The precise geographical locations
in China are shown in Fig. 1.

Sample collection
Examination and sample collection were performed
during the first medical screening on admission to the
university directly after arrival to HHU using noninva-
sively collected substrates (urine) in September 2019.
Only healthy subjects without chronic diseases were in-
volved in the current investigation to avoid side effects
and interactions of diseases on the studied parameters.

Sample processing
Collection of urine samples (second portion) was
performed in the morning using plastic Vacuette® Urine
Collection Cups (Greiner Bio-One International AG,
Austria).
Evaluation of dimethoate, BPA, and BaP levels in the

urine of examinees was performed using liquid
chromatography-mass spectrometry (LC-MS). The levels
of omethoate and 3-hydroxypyrene, metabolites of di-
methoate and BaP and BPA, respectively, were exam-
ined. Standard working solutions of omethoate, BPA,
and 3-OHBaP (1 μg/mL) were prepared with methanol
as the solvent. After continuous dilution 104 times, the
standard working solution of 100 pg/mL was obtained.
Taking 3-OHBaP as an example, different concentra-
tions of 3-OHBaP standard working solutions were pre-
pared. Fifty microliters of each 3-OHBaP standard

working solution was prepared and injected into the sys-
tem. The collected urine samples (2 mL) were filtered
with a 0.22 μM filter membrane, the pH was adjusted to
5.4 by adding acetic acid-sodium acetate buffer (0.5 M),
then β-glucuronidase/arylsulfatase (10 μL) and vitamin C
(5 mg) were added, and the samples were incubated
overnight at room temperature to complete the enzym-
atic hydrolysis. The samples were extracted after enzym-
atic hydrolysis by solid-phase extraction with an SPE
column (C18 ENVI 0.25 g). The extract was eluted with
methanol (2 mL) and dried with nitrogen. Finally,
methanol (100 μL) was used to redissolve the analyte to
be determined. Fifty microliters of the analyte to be
tested was transferred to a liquid chromatography bottle
with a microsyringe, which was used specifically for the
injection analysis of BaP levels. The detection methods
of omethoate and BPA were consistent with those of 3-
OHBaP [34].

Statistical analyses
Statistical treatment of raw data was performed using
SPSS 26.0 (IBM Corp., Armonk, NY, USA) software.
Geometric mean (GM) values were used as descriptive
statistics for pollutant levels. T-tests were used to com-
pare GMs between categories. Multiple regression ana-
lysis was performed to specify the association among the
pollutant levels, BMI, and region of origin. All models
were adjusted for age and sex variability. The results of
the tests were considered significant at P < 0.05.

Results
Urine omethoate, BPA, and 3-OHBaP were detected in
100% of the recruited people. The presented results were
standardized by volume and creatinine to eliminate the
effect of the time of urine collection, urine concentra-
tion, and urine flow rate [35].
Hohai University is a multidisciplinary comprehensive

university located in Jiangsu Province of East China. The

Table 1 Demographic characteristics and particular residence of origin of the examined subjects

Region East Northeast North Northwest Southwest South

n 319 10 85 41 43 42

Age 17.9 ± 0.6 18.3 ± 0.7 17.8 ± 0.7 17.9 ± 0.7 17.9 ± 0.6 17.8 ± 0.5

Gender(F/M) 175/144 6/4 49/36 17/24 22/21 18/24

BMI (kg/m2) 20.93 ± 3.1 21.2 ± 3.1 21.2 ± 2.7 20.8 ± 3.4 20.2 ± 3.2 21.9 ± 2.5

Waist (cm) 72.9 ± 8.2 73.3 ± 10.3 73.2 ± 8.4 73.4 ± 8.3 71.0 ± 9.0 75.2 ± 7.2

Province Zhejiang-16 Liaoning-3 Tianjin-7 Shaanxi-10 Yunnan-14 Hunan-17

Shanghai-2 Jilin-4 Shandong-14 Shanxi-10 Sichuan-17 Guangxi-16

Jiangxi-18 Heilongjiang-3 Hubei-10 Qinghai-5 Guizhou-12 Guangdong-9

Jiangsu-248 Henan-31 Ningxia-1

Fujian-13 Hebei-23 Gansu-15

Anhui-22

Xu et al. BMC Public Health         (2021) 21:1692 Page 3 of 10



freshmen came from all over the country, including East,
North, South, Northeast, Northwest, and Southwest
China. We choose East China as the reference category
because Hohai University is located in East China, and
the environmental exposure levels of subjects may vary
considerably according to geography and lifestyle. The
obtained data demonstrated that the origin of the stu-
dents had an important impact on urine chemicals
(Table 2). In particular, the volume-based GMs of urine
omethoate, BPA, and 3-OHBaP concentrations in stu-
dents from Southwest China were significantly lower
than those in students from East China by 9.49, 10.14,
and 8.82%, respectively. Likewise, the standardized GMs
of urine omethoate, BPA, and 3-OHBaP concentrations
in students from Southwest China were significantly
lower than those in students from East China by 10.81,
11.49, and 10.26%, respectively. Data from other regions
were more homogenous.
The volume-based geometric mean (GM) concentration

was 9.47 μg/L (Table 3). The GM of urine omethoate in

the female group (8.55 μg/L) was significantly lower than
that in the male group (10.64 μg/L). The GM omethoate
concentration rose significantly from 9.12 μg/L in individ-
uals with a normal BMI (18.5 ≤ BMI ≤ 23.9) to 14.68 μg/L
in individuals with an overweight BMI (BMI > 23.9). How-
ever, only a moderate change in GM omethoate concen-
tration was observed between the normal BMI (9.12 μg/L)
and the underweight BMI (BMI < 18.5) (8.74 μg/L).
Males with a BMI greater than 23.9 had a significantly

higher GM omethoate concentration (17.49 μg/L) than
those with a normal BMI (10.19 μg/L). Likewise, females
with a BMI greater than 23.9 had significantly higher
GM omethoate concentrations (12.41 μg/L) than those
with a normal BMI (8.3 μg/L).
Standardizing omethoate with urinary creatinine con-

centrations resulted in a GM omethoate concentration
of 10.80 μg/g among all recruited people. The standard-
ized GM omethoate concentration in the female group
(10.53 μg/g) was significantly lower than that in the male
group (11.11 μg/g). The standardized GM omethoate

Fig. 1 Map of study area showing sampling sites
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concentration in people with an overweight BMI
(16.21 μg/g) was significantly higher than that in people
in other BMI groups. The only moderate difference was
observed between the normal BMI (10.43 μg/g) and BMI
less than 18.5 (10.01 μg/g) groups.
The standardized GM omethoate concentration in

overweight males (18.16 μg/g) was significantly higher
than that in normal (10.60 μg/g) or underweight males
(10.33 μg/g). Likewise, overweight females had signifi-
cantly higher standardized GM omethoate concentrations
(14.54 μg/g) than normal (10.28 μg/g) or underweight
females (9.68 μg/g).
The volume-based GM of urine BPA concentration

was 3.54 μg/L (Table 3). Interestingly, the GM of urine
BPA in the female group (3.56 μg/L) was not signifi-
cantly different from that in the male group (3.52 μg/L).
People with an overweight BMI had a higher GM urine
BPA concentration (4.94 μg/L) than those with a normal
(3.50 μg/L) or underweight BMI (2.93 μg/L). Notably, a
significant change in GM BPA concentration was ob-
served between the normal BMI and the underweight
BMI groups.
Males with an overweight BMI had a significantly

higher GM BPA concentration (5.13 μg/L) than those
with a normal BMI (3.47 μg/L) and an underweight BMI
(2.83 μg/L). Likewise, females with an overweight BMI
had a significantly higher GM BPA concentration
(4.77 μg/L) than those with a normal BMI (3.52 μg/L)
and an underweight BMI (3.03 μg/L).
Standardizing BPA according to urinary creatinine

concentrations resulted in a GM BPA concentration of
4.04 μg/g for all recruited people. There was no signifi-
cant difference between the male group (3.68 μg/g) and
the female group (4.39 μg/g). The standardized GM BPA
concentrations in people with an overweight BMI
(5.46 μg/g) were significantly higher than those in indi-
viduals in other BMI groups. The only moderate change
was observed between the normal BMI (4.00 μg/g) and
the underweight BMI (3.35 μg/g) groups.
The standardized GM BPA concentrations in

overweight males (5.32 μg/g) were significantly higher
than those in normal (3.61 μg/g) or underweight
males (3.03 μg/g). Likewise, overweight females had

significantly higher standardized GM BPA concentra-
tions (5.59 μg/g) than normal (4.36 μg/g) or under-
weight females (3.72 μg/g).
The volume-based GM urine BaP concentration was

0.34 ng/L (Table 3). The GM of urine BaP in the female
group (0.31 ng/L) was significantly lower than that in the
male group (0.38 ng/L). People with overweight BMI had
a higher GM urine BaP concentration (0.45 ng/L) than
those with a normal (0.34 ng/L) or underweight BMI
(0.27 ng/L). Notably, a significant change in GM BaP
concentration was also observed between the normal
BMI and underweight BMI groups.
Males with an overweight BMI had a significantly

higher GM BaP concentration (0.52 ng/L) than those
with a normal BMI (0.38 ng/L) and an underweight BMI
(0.29 ng/L). Likewise, females with an overweight BMI
had a significantly higher GM BaP concentration (0.39
ng/L) than those with a normal BMI (0.31 ng/L) and an
underweight BMI (0.25 ng/L).
Standardizing BaP with urinary creatinine concentra-

tions resulted in a GM BaP concentration of 0.39 ng/g
for all recruited people. A significant difference was
found between the male group (0.40 ng/g) and the fe-
male group (0.38 ng/g). The standardized GM BaP con-
centrations in people with an overweight BMI (0.50 ng/
g) were significantly higher than those in individuals in
other BMI groups. A significant change was also ob-
served between the normal BMI (0.39 ng/g) and the
underweight BMI (0.31 ng/g) groups.
The standardized GM BaP cconcentrations in over-

weight males (0.54 ng/g) were significantly higher than
those in normal (0.40 ng/g) or underweight males (0.31
ng/g). Likewise, overweight females had significantly
higher standardized GM oncentrations (0.45 ng/g) than
normal (0.38 ng/g) or underweight females (0.30 ng/g).
The association between urinary toxin levels and BMI,

as well as the potential confounding effects of age, sex,
and waist circumference, was additionally studied in the
regression model (Table 4). Particularly, in this regres-
sion model, urinary omethoate, BPA, and 3-OHBaP were
not associated with age or waist circumference. How-
ever, sex and BMI were considered significant predictors
of the volume-based concentration of urinary

Table 4 Multiple linear regression analysis of the impact of BMI, waist circumference, and sex on urine chemicals in freshmen

Predictor Unstandardized Standardized by creatinine

omethoate Bisphenol A 3-OHBaP omethoate Bisphenol A 3-OHBaP

β P β P β P β P β P β P

Sex 1.739 < 0.001* −0.183 0.001* 0.063 < 0.001* 0.183 0.416 − 0.880 < 0.001* 0.007 0.394

Age 0.011 0.923 −0.013 0.734 −0.001 0.797 −0.096 0.535 −0.060 0.278 −0.005 0.317

BMI 0.572 < 0.001* 0.170 < 0.001* 0.016 < 0.001* 0.588 < 0.001* 0.172 < 0.001* 0.016 < 0.001*

Waist 0.007 0.648 0.004 0.476 7.743E-5 0.877 0.010 0.647 0.005 0.477 0.000224 0.756

Note. * significantly different from estimate for the reference category
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omethoate, BPA, and 3-OHBaP. Notably, male sex was
positively associated with the volume-based concentration
of urinary omethoate and 3-OHBaP but inversely associ-
ated with urinary BPA. However, after standardization ac-
cording to urinary creatinine, male sex was only inversely
associated with urinary BPA. It was also notable that BMI
was positively associated with both volume-based and
standardized concentrations of urinary omethoate, 3-
OHBaP, and BPA.

Discussion
In this study, we chose 3 kinds of very common pollut-
ants in the Chinese environment to represent the expos-
ure level of pollutants in young Chinese people aged 17
~ 19 years. In addition, the detection did not rely on a
blood sample but rather urinary samples obtained from
noninvasive sources, which are easily obtained and inex-
pensive. Urine could also better reflect the changes in
human metabolism because the metabolite concentra-
tion is higher in urine than in human plasma or serum
[36]. In order to reflect recent exposure levels and avoid
changes in concentration caused by chemical metabol-
ism, we collected samples when the students entered
school for the first time.
The obtained data demonstrate that the freshmen of

Hohai University originating from distinct geographic
regions of China are characterized by high pollutant ex-
posure levels. Bushnik, T. reported that the urinary level
of BPA in Canada (1.16 μg/L) was almost 1/3 of that in
our sample (3.54 μg/L) [37]. This difference may reflect
the differences in the situation of BPA pollution between
the Chinese and other countries’ environments. Yu et al.
reported that urinary 1-OHP concentrations increased
with increasing air concentrations of BaP in an industrial
area in Lanzhou City [38]. Notably, there are no data re-
ports on the urinary level of dimethoate in healthy adults
in other countries. Therefore, it is meaningful to detect
the baseline level of these three pollutants to reflect the
effects of the local environment on the human body.
Furthermore, males showed a significantly higher urinary
level of BPA than females in Canada, while no significant
sex difference in BPA levels was observed in our data.
This difference may reflect the differences in pharmaco-
kinetic factors between sexes and races, the relevance of
which is not currently known [39].
Despite no differences in urinary BPA between sexes

in our data, males exhibited a significantly higher level
of urinary omethoate and 3-OHBaP than females (Table 3).
Moreover, sex was considered a significant predictor of the
urinary level of omethoate and 3-OHBaP in the regression
model. This finding may reflect the differences in lifestyle
between males and females.
The association of BMI and the urinary levels of

omethoate, 3-OHBaP, and BPA was additionally studied

in regression models. In particular, BMI could be
considered a significant predictor of the urinary level
of these three pollutants regardless of whether the
values are standardized by urinary creatinine (Table
4). Since most persistent organic pollutants (POPs)
are lipophilic, it has been widely shown that POPs
can be stored in adipose tissue [40–42]. Moreover,
the accumulated POPs could increase the risks of
obesity and diabetes by inducing adipogenesis [43, 44]
and inhibiting glucose uptake [45]. This indicates that
adipose tissue can act as a storage for most pollutants
in our bodies. The stored pollutants in adipose tissue
can further enhance adipogenesis and insulin resist-
ance. Our data and previous findings indicate that in-
creasing BMI and obesity can be risk factors for
greater accumulation of pollutants in the human
body, which could further act as obesogens.
In addition to differences according to BMI, we found

that the students from Southwest China had a signifi-
cantly lower level of all three pollutants than those from
East China, which was considered the control group
(Table 2). Interestingly, there was no significant differ-
ence in BMI between students from Southwest China
and those from East China. This finding reflects that the
living environment and lifestyle may determine this dif-
ference [46]. Although there are very few reports on the
differences among various provinces in China, it has
been reported that air pollution in North China is much
worse than that in South China [47]. This may partially
explain our finding and indicates that the living environ-
ment can determine the level of accumulated pollutants
in our bodies. To investigate the relationship between
the accumulated pollutants in the human body and
health, further research is needed to understand the de-
tailed differences in the living environment and lifestyle
between people from Southwest China and other geo-
graphic regions in China.
Some studies have reported that urinary levels of

these chemicals may have strong correlations with
some adverse health effects as well as the studies
reported in CDC. Wang et al. [48] reported that
preconception concentrations of BPA in female urine
were associated with decreased fecundability, particu-
larly among older women. In addition, Niu et al. [49]
reported that occupational BaP exposure may reduce
coke oven workers’ neurobehavioral function and
monoamine, amino acid and choline neurotransmitter
levels. However, few studies have assessed the associa-
tions between urinary dimethoate levels and adverse
health effects. This study contributes to our under-
standing of the baseline dimethoate, BaP, and BPA
levels in healthy adults and will help to improve pub-
lic health awareness and have important implications
for health policy formulation.
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