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Abstract

Background: Norovirus has a higher level of under-reporting in England compared to other intestinal infectious
agents such as Campylobacter or Salmonella, despite being recognised as the most common cause of gastroenteritis
globally. In England, this under-reporting is a consequence of the frequently mild/self-limiting nature of the disease,
combined with the passive surveillance system for infectious diseases reporting. We investigated heterogeneity in
passive surveillance system in order to improve understanding of differences in reporting and laboratory testing
practices of norovirus in England.

Methods: The reporting patterns of norovirus relating to age and geographical region of England were investigated
using a multivariate negative binomial model. Multiple model formulations were compared, and the best performing
model was determined by proper scoring rules based on one-week-ahead predictions. The reporting patterns are
represented by epidemic and endemic random intercepts; values close to one and less than one imply a lower
number of reports than expected in the given region and age-group.

Results: The best performing model highlighted atypically large and small amounts of reporting by comparison with
the average in England. Endemic random intercept varied from the lowest in East Midlands in those in the under

5 year age-group (0.36, C 0.18-0.72) to the highest in the same age group in South West (3.00, Cl 1.68-5.35) and
Yorkshire & the Humber (2.93, Cl 1.74-4.94). Reporting by age groups showed the highest variability in young children.

Conclusion: We identified substantial variability in reporting patterns of norovirus by age and by region of England.
Our findings highlight the importance of considering uncertainty in the design of forecasting tools for norovirus, and
to inform the development of more targeted risk management approaches for norovirus disease.
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Background

Norovirus is recognised as the most common cause of
diarrhoeal disease globally [1] but has the highest levels
of under-reporting compared to other intestinal infec-
tious agents such as Campylobacter or Salmonella [2].
In England, the level of this under-reporting is a conse-
quence of the nature of the disease and the surveillance
system for infectious diseases. The illness is
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characterised by a sudden onset of symptoms and is gen-
erally self-limiting, lasting around two to 3 days in other-
wise healthy individuals, and most people recover
without contacting medical services. However, some in-
dividuals suffer more severe disease outcomes in [3, 4].
Norovirus is not a notifiable disease in England. How-
ever, there is a statutory duty on the providers of diag-
nostic laboratory services to report to Public Health
England (PHE) isolates of an infectious agent within 7
days [5] and norovirus is often reported this way.
Reporting of outbreaks in care homes and in health care
settings is encouraged by the regulator (Care Quality
Commission) in England, but it remains voluntary. All
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routine laboratory reports of norovirus are reported to
the national laboratory surveillance system — Second-
Generation Surveillance System (SGSS) [6].

Norovirus places a considerable burden on health care
services in England both financial, with the cost estimated
at between £63 and £106 million annually [7], and in
terms of capacity adding significantly to the annual “win-
ter pressures”. To reduce this burden, PHE recommends
that affected individuals stay at home until symptoms have
resolved. While not seeking medical attention prevents
norovirus from spreading, it limits the chances of isolated
cases to feature in a national surveillance system [8]. Con-
sequently, the surveillance system might be prone to rep-
resent cases associated with outbreaks particularly from
semi-closed settings such as care homes and hospitals ra-
ther than those in the community [9].

A better understanding of the heterogeneity in pas-
sive surveillance system improves understanding of
differences in reporting and laboratory testing prac-
tices across geographic regions and age groups. Statis-
tical modelling approaches can help quantify this
heterogeneity. Count data are often modelled using a
Poisson distribution: however biological data com-
monly exhibit greater variation than the Poisson
model can accommodate (called “over-dispersion”).
The negative binomial distribution is a viable alterna-
tive. To account for heterogeneity due to individual
or regional differences, random effects are commonly
used. However, the use of random effects brings chal-
lenges when it comes to identifying the best model
formulation. Typically, Akaike (AIC) or Bayesian in-
formation criterion (BIC) is used. When the model
contains random effects the definition of the AIC and
BIC is not straightforward [10], and the use of proper
scoring rules is one approach to overcome these diffi-
culties [11]. This approach has been described else-
where [12]. Briefly, the approach assesses predictive
distribution based on predictions from the proposed
model.

We investigated the reporting patterns of norovirus
relating to geographical region and age in England. A
simpler analysis of earlier data which motivated the
current study is reported in [13]. First, an age-
stratified multivariate discrete spatio-temporal model
was fitted. Then, we incorporated random effects into
four model formulations which were evaluated against
the simpler model and each other. This led to the se-
lection of the best performing model based on one-
week-ahead predictions. Finally, we used the best per-
forming model to highlight regions with atypically
large or small amounts of reporting by comparison
with the average in England. This information is
highly relevant for public health policy and planning
but also for any research using routine data.
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Methods

Data

All diagnostic laboratories in England report data to the
SGSS. The process of data validation and management is
described elsewhere, e.g. [6]. We obtained the weekly
numbers of laboratory confirmed norovirus cases be-
tween week 27, 2014 (June) and week 26, 2019 (July) for
nine regions of England from SGSS stratified by age.
The period did not coincide with an emergence of a new
strain; the norovirus Sydney2012 strain was dominant
throughout the study [14].

The Office for National Statistics (ONS) provides age-
stratified population estimates for England. We obtained
regional population data stratified by six age groups: 0—
4, 5-14, 15-24, 25-44, 45-64, 65+. Social contacts
matrix for these age groups is based on physical as well
as non-physical contacts of UK subset of the POLYMOD
study [15].

We also obtained the numbers of primary schools and
nurseries [16] and hospitals [17] in each region, since
norovirus is known to cause outbreaks in closed and
semi-closed environments. These regional counts were
normalised to range from 0 to 1 and thus providing re-
gional proportions.

The R code to import and prepare data for modelling
is provided in public GitHub repository (see Availability
of data and materials).

Statistical modelling

The multivariate time-series modelling framework al-
lows for additive decomposition of aggregated time
series into endemic and epidemic components repre-
senting origins of an infection spread [11, 18, 19]. The
initial formulation described in Held et al. [18] was later
extended to consider social contacts within a population
[19], and heterogeneity was often found in count data
[11]. We adopted these methods to investigate reporting
patterns of norovirus in England, but the terminology is
inherited.

The endemic component represents sporadic cases: in
other words, the number of reported norovirus cases
that would be expected in specific regions and age-
groups in the absence of outbreaks. The epidemic com-
ponent conceptually represents reported cases emerging
from outbreaks. The spatial and temporal spread is spe-
cified in terms of power-law distance decay. One of the
power-law decay benefits is the relaxation of a simple as-
sumption that the epidemic can only spread to a directly
neighbouring region, i.e. a region with a shared border.
Moreover, when distance decay depends on the popula-
tion, it can describe temporal (i.e. within-region) spread,
often referred to as a gravity model, e.g. [20].

Weekly count of norovirus cases (t =1, ..., 52) per age
group (g=1, ..., 6) per region of England (r=1, ..., 9) is
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denoted by Y, Then, conditional upon previous obser-
vations, Y, is assumed to follow a negative binomial
distribution with mean

Hgr = POPg Ve + ¢grtzg‘r‘ LCg‘g Wr‘rj Ygria (1)

The population fraction pop, based on mid-2016
OSN estimates is used as an offset for the endemic com-
ponent v, Since we were interested in reflecting the
differences in population size across age groups and geo-
graphic units rather than temporal variation in the
population per se, temporal variation in population data
was not explicitly modelled. The row-normalised prod-
uct of POLYMOD contact matrix C,-, and spatial
weights W<, summed over the age group g’ and region
r’ forms the epidemic component ¢, In other words,
the product determines how the counts from the previ-
ous period affect the current mean in the age group and
region [19]. Mathematical expression of vy, and ¢, in
fixed-effect formulations from the previous equation are

log(vgre) = o) + al*) + anal)) + azxly)

+asaly) + B+ Yy sin(og)
+ 6Weos(wst)} (2)

log(¢bg,c) = ag” + ) + tlog(pop,,)
S .
+ ZS:O{yg‘f')sm(cost)
+ 8Wcos(w )} (3)

We included age-specific fixed effects a, in both com-
ponents to account for age-related susceptibility, linear
trend B, and S number of harmonic waves in curly
brackets where the y, and J, signify seasonal parameters
and o, =2ms/52 represents Fourier frequencies for
weekly data. Additionally, logged regional proportions of

numbper oI primary Schools aflxlr , nurseries afzer

. v . . .
hospitals orgxgr) were included as endemic covariates. For

and

the rest of the model formulations, random effects bé’r)
are added to capture any remaining heterogeneity; b‘é‘?

~ N(0,02), bé‘r/’) ~ N(0,0%) . These can be correlated or
uncorrelated.

As previously mentioned, comparing models employ-
ing random effects can be challenging. As recommended
by Paul and Held in [11], we use strictly proper scoring
rules, namely ranked probability score (RPS) and loga-
rithmic score (logS). The earlier is less sensitive to ex-
treme values, whereas the latter will more strictly
penalise them. In other words, logS is more sensitive to
a misprediction in outbreak period than RPS. Both
scores were calculated from one-week-ahead predictions
based on unseen data from norovirus season 2018—2019.
The train and test partitions are illustrated in
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Additional file 1. Model selection is then based on the
scores and permutation tests, determining whether one
score is significantly better than the other.

The analyses were conducted using R software [21].
Social contacts matrix was obtained from the R package
‘socialMixer’ [15], and modelling tasks were performed
with R packages ‘surveillance’ [22] and ‘hhh4contacts’
[19] (Egs. 1). The penalised log-likelihood in the hhh4
function is penalised using the quasi-Newton algorithm
by default. In the case of the mixed-effects models,
Nelder-Mead penalisation was preferred to maximise the
marginal likelihood concerning the variance parameters
[11]. The regression parameters were optimised on the
log-scale.

Results

Initially, we compared fixed-effect models with one (S =
1), two (S=2) and three (S=3) seasonal waves in
endemic component to determine the baseline model
formulation (see Additional file 2). The predictive per-
formance was not significantly different between these
models and so two seasonal waves were selected as the
baseline.

Table 1 shows that all the models were well-calibrated,
as suggested by p >.05. A model is well-calibrated when
its predictive distribution covers the observed value; for
example, when the prediction for week 15 in South West
England is 200 cases and the upper bound of the pre-
dictive distribution is 190 cases, miscalibration is sus-
pected. Models including random effects with harmonic
waves in the epidemic component achieved the lowest
scores.

The two best performing models, B2 and C2, were se-
lected for permutation test-based comparison. The com-
parison of error scores showed no difference between
models in both, RPS (p =0.408) and logS (p =0.067).
The B2 model showed lower score but as the models
were not significantly different in the predictive per-
formance the second-best model could have been se-
lected as well.

The point estimates, confidence intervals (CI) and
standard errors of the best performing negative binomial
regression model with uncorrelated random effects and
epidemic seasonal component are reported in Table 2.
Considering fixed age-group coefficients, the higher epi-
demic intercept for the 65+ group (1.796, CI 1.085—
2.971) compared to the other groups and the endemic
intercept in the same group suggests there is a bias to-
wards reporting of outbreak-generated cases from care
homes and hospitals. Generally, the models without epi-
demic seasonality (B1, C1) suggest that 87% of the re-
ported cases originate from outbreaks, and 13% are
endemic in nature. However, models considering sea-
sonal waves (B2, C2) in epidemic component showed
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Table 1 Performance evaluation of selected models based on proper scoring rules

Model RPS logS
Endemic seasonality (S = 2) + linear trend + covariates Mean score Calibration test (p-Value) Mean score Calibration test
(p-Value)

No random effects:

A1 epidemic (S=0) 0938 0385 1480 0.270

A2 epidemic (S=1) 0.934 0.251 1480 0177
Uncorrelated random effects:

B1 epidemic (S=0) 0.890 0.888 1430 0.499

B2 epidemic (S=1) 0.884 0514 1430 0.245
Correlated random effects:

C1 epidemic (S=0) 0.890 0.810 1430 0448

C2 epidemic (S=1) 0.884 0452 1430 0211

Table 2 Coefficient estimates from the best performing model
(endemic seasonality (S2) + epidemic seasonality (S1) + trend +
uncorrelated random effects)

Estimates Cl2.5% C197.5% Std. Error
Epidemic Component:
Age [05-14] 0.041 0.024 0.072 0.012
Age [15-24] 0.064 0.040 0.101 0.015
Age [25-44] 0.044 0.024 0.080 0014
Age [45-64] 0.114 0.063 0.206 0.034
Age [65+ 1.796 1.085 2971 0461
Population Size 1431 1.036 1.978 0.165
Sine (2* m *t/52) 0.929 0.871 0.992 0.032
Cosine (2* m *t/52) 0.744 0.697 0.794 0.019
Random Intercept 7.548 1434 39.731 6.396
Endemic Component:
Age [05-14] 0.180 0.092 0.350 0.061
Age [15-24] 0.115 0.058 0227 0.040
Age [25-44] 0.136 0.071 0.263 0.046
Age [45-64] 0.154 0.080 0.297 0.052
Age [65+ 0.355 0.181 0.695 0.122
Primary Schools (%)  0.869 0.657 1.149 0.142
Nurseries (%) 1.113 0.866 1431 0.128
Hospitals (%) 0.997 0.898 1.107 0.053
Sine (2* m *t/52) 1.112 0.991 1.248 0.071
Cosine (2* m *t/52) 1.142 1.000 1.303 0.060
Sine (4% m *t/52) 0.850 0.781 0.925 0.038
Cosine (4* m *t/52)  0.830 0.771 0.894 0.019
Random Intercept 89.232 48.502 164.162 27.754
Spatial weights (d) 3617 3313 3.948 0.162
Overdispersion 1.337 1.305 1.370 0012

that the proportion of outbreak-related reporting is
lower in summer (57%). The relative contribution of en-
demic and epidemic components per region and age
group is illustrated in Figs. 1 and 2 respectively. Figure 2
also shows high levels of within-group spread in small
children and the elderly.

Norovirus reporting patterns

Reporting patterns were described in terms of en-
demic and epidemic random intercepts (RI) per age
group and region (Fig. 3); values close to one and less
than one imply lower number of reports than ex-
pected given the linear trend, harmonic waves, popu-
lation structure, number of primary schools, nurseries
and hospitals. Endemic random intercept varied from
the lowest in East Midlands (UKF) in those in the
under 5 year age-group (0.36, CI 0.18-0.72) to the
highest in the same age group in South West
(UKK)(3.00, CI 1.68-5.35) and Yorkshire & the Hum-
ber (UKE) (2.93, CI 1.74-4.94). Overall, regions dis-
played in purple consistently across the age groups
(North West — UKD, West Midlands — UKG) are the
most likely suspects for underestimation of norovirus
burden (Fig. 3). In contrast, regions such as Yorkshire
& the Humber and South West (UKK) are displayed
in shades of green and blue.

Also, regions varied in age-related reporting pat-
terns. For example, the lowest endemic RI for North
East (UKC) was identified in those in the 15-24 age
group (0.43, CI 0.18-1.04), for East Midlands (UKF)
it was the young children (0.36, CI 0.18-0.72) and for
South East (UK]J) it was school age children (0.44, CI
0.23-0.81). Some combinations of age groups and re-
gions showed wide confidence interval ranges span-
ning from below one to over one pointing towards
high levels of uncertainty, e.g. South West (UKK) in
elderly (1.48, CI 0.80-2.74).
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As judged by variance, the regional differences in the
epidemic RI were less pronounced (Var(bé‘f)) =0.129)

compare to endemic RI (Var(bg)) = 0.450). As in the

endemic random intercepts, the under 5 years age group
showed the highest variation across regions with the
highest epidemic RI in the South West (2.49, CI 1.83—
3.38; < 5yrs) and the lowest in the West Midlands (0.44,
CI 0.29-0.66; < 5yrs). All regions were closer to the ex-
pected incidence, except South East. In the South East,
across all age groups, the epidemic RI was lower than
the endemic with the lowest epidemic RI in elderly
(0.71, CI 0.52-0.97). North East showed a slightly differ-
ent pattern in epidemic and endemic RI. The model
identified an unexpectedly low number of reports in epi-
demic RI but only in the age-groups from 5 to 64 years.
In terms of endemic RI, young children were the only
group to reach a value above one. Further details are
provided in the Additional files 3 and 4. The patterns of
heterogeneity were stable across models in both
components.

Discussion

We aimed to describe norovirus reporting patterns in
England using mixed-effect modelling. We started by de-
scribing a relationship between age-stratified weekly re-
ports of norovirus by region and a set of predictors

including seasonal waves, relevant regional covariates,
spatial relationship between regions, within region noro-
virus activity and average contact between the age-
groups. After determining the best model, we analysed
endemic and epidemic random intercepts. We found
that reporting practices vary greatly across regions and
subpopulations, and that the seasonal changes in report-
ing related to differences between outbreaks and spor-
adic cases.

Context

Our analysis identified geographic areas where reporting
of norovirus was lower than expected, given the age
structure of the population, social contacts between
groups and covariates such as number of primary
schools, nurseries and hospitals. As explained by Gib-
bons et al. [23], there are two main reasons for disease
burden underestimation: 1) Under-ascertainment and 2)
Under-reporting. The former occurs when community
cases do not seek healthcare, and the latter when cases
presenting to healthcare do not reach the surveillance
system due to failure to diagnose or report a pathogen
correctly. Reporting patterns described in this study cap-
ture these instances with random effects. The endemic
random effects in some regions were low for all the age
groups (North West and West Midlands) suggesting that
under-ascertainment or under-reporting is more likely
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in these areas. Since norovirus is not a notifiable disease,
this may lead to the perception that it is a low priority
pathogen. The perception together with unavailability of
a specific norovirus treatment could play a critical role
when a clinician decides on whether to request a sample.
For a reference laboratory reporting of an identified
pathogen is mandatory through legislation [5]; therefore,
here, the variability may be explained by differences in
testing practices rather than reporting per se. Besides,
the speed of recovery can be another factor as most of
the people will recover between 12 and 72h [3] and so
they may not have contact with medical services to pro-
vide a sample during the period of illness. In contrast,
for some regions, random effects were atypically high.
This may in part reflect regions and laboratories that
have historically functioned as sentinel surveillance cen-
tres for norovirus (for example Avon in South West as
described in [24, 25]) or are very proactive in reporting
(for example Yorkshire & the Humber), and to a degree
may respond to particular research interests among vi-
rologists or infectious diseases specialists in the region.
Furthermore, our data suggest that the regional report-
ing variation was most pronounced in the sub-
population of young children, who had the largest differ-
ence in reporting between the most passive and active
regions in both outbreaks and sporadic cases. Thus, in

some areas, norovirus in younger children could be
more likely to be underestimated compared to other
groups. These results agree with previous studies indi-
cating that norovirus in children is underdiagnosed in
England [26]. However, further research is needed to
clarify the extent of the issue compared to other
subpopulations.

The model suggests that cases from outbreaks are
more likely to be reported; disproportionally higher eld-
erly populations were shown to be associated with an in-
creased epidemic incidence of reported norovirus
infection, with a weaker association identified in the en-
demic sub-model. Also, the distribution of epidemic ran-
dom intercepts was narrower compare to the endemic
suggesting that reporting practices are relatively similar
across regions and age-groups when it comes to
outbreak-generated cases. The variation we see is likely
related to the number of samples collected per outbreak.
For example, a study investigating care homes outbreaks
in North West points out that even though at least six
samples are recommended, the median is only three
[27]. Most of the reported cases of norovirus are epi-
demic in nature (86%). These findings strongly support
the hypothesis that cases of norovirus from outbreaks in
nursing homes and hospitals are more likely to appear in
national statistics.
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What this study adds

This study adapted HHH4 analytic pipeline [11, 18, 19]
to analyse norovirus reporting practices across regions
and selected age groups in England. One of the benefits
of this method was that it allows borrowing strength be-
tween age-groups as opposed to formulating a separate
model for each group [19], some of which have low
numbers of reported cases. This means that the same
procedure can be followed by regional PHE units using
higher spatial granularity. Additionally, we pointed out
some of the biases in the otherwise stable and consistent
national surveillance system, such as the tendency to see
outbreak-related rather than sporadic cases in the na-
tional statistics and regional variation. Furthermore, we
described the reporting patterns of norovirus, which can
be of use to public health policymakers. Models facilitate
focusing upon regions and subpopulations in which

under-reporting may be most pronounced and have the
power to highlight whether the reporting for different
subpopulations within a particular region is low. Vari-
ability in reporting emphasises the importance of consid-
ering uncertainty as it has implications for decisions
regarding the development of more targeted norovirus
risk management (e.g. vaccine), and overall, these in-
sights are relevant to potential norovirus forecasting ef-
forts which are likely to follow the path of seasonal
influenza, e.g. [28]. In light of this, we point out that
multivariate approaches have clear benefits over separate
age- or region-based models as they allow for spatial re-
lationships. However, at the regional geographic level of
granularity, the spatial effects are relatively small and so
modelling every region of England on its own when age-
stratification is unnecessary or unavailable could yield
valid predictions as well.
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Limitations

A weakness of this analysis is that the level of geograph-
ical resolution in the data is coarse, and this limits the
depth of inference. Despite the inclusion of regional fac-
tors (number of hospitals, schools and nurseries) and
population structure, random effects may have captured
some residual spatial variation that could potentially be
explained by other factors such as genotype. However,
given that routine analysis did not detect any changes or
shift in the main genotypes circulating at this time [29],
our analysis is unlikely to have been affected by such
change. Also, our approach was not able to differentiate
between under-ascertainment and under-reporting.
Moreover, the POLYMOD study took place in 2005/
2006, and the contact patterns in the study period could
be different during the studied period. Despite these lim-
itations, we have applied the methods to consistently
collected data with the best resources available.

Conclusion

Our findings contribute to the understanding of noro-
virus reporting patterns in England and provide a basis
for future norovirus forecasting endeavours. There is in-
herent uncertainty in the routinely collected surveillance
data, which needs to be recognised and methods of ana-
lysis adjusted accordingly. Regional differences were an-
ticipated as attitudes towards the importance of
norovirus surveillance as well as testing practices vary
across reference laboratories and hospitals. Our analysis
highlighted regions in which sporadic cases may be
underestimated. Understanding the biases in surveillance
data and sources of variation is crucial, especially as dis-
ease forecasting tools are increasingly developed and ap-
plied. In this context, multivariate approaches should be
favoured over separate age- or region-based models. Be-
sides forecasting, future research could enhance under-
standing of why under-reporting takes place, and so
inform targeted norovirus risk management strategies.
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