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Behavioral changes before lockdown and
decreased retail and recreation mobility
during lockdown contributed most to
controlling COVID-19 in Western countries
Koen Deforche1, Jurgen Vercauteren2* , Viktor Müller3 and Anne-Mieke Vandamme2,4

Abstract

Background: The COVID-19 pandemic has prompted a lockdown in many countries to control the exponential
spread of the SARS-CoV-2 virus, hereby reducing the time-varying basic reproduction number (Rt) to below one.
Governments are looking for evidence to balance the demand of their citizens to ease some of the restriction,
against the fear of a new peak in infections. In this study, we wanted to quantify the relative contribution of
mobility restrictions, and that of behavioral changes that occurred already before the lockdowns, on the reduction
of transmission during lockdowns in Western countries in early 2020.

Methods: Incidence data of cases and deaths from the first wave of infections for 35 Western countries (32
European, plus Israel, USA and Canada) were analyzed using epidemiological compartment models in a Bayesian
framework. Mobility data was used to estimate the timing of changes associated with a lockdown, and was
correlated with estimated reductions of Rt.

Results: Across all countries, the initial median estimate for Rt was 3.6 (95% IQR 2.4–5.2), and it was reduced to 0.78
(95% IQR 0.58–1.01) during lockdown. 48% (18–65%) of the reduction occurred already in the week before
lockdown, with lockdown itself causing the remaining drop in transmission. A lower Rt during lockdown was
independently associated with an increased time spent at home (0.21 per 10% more time, p < 0.007), and
decreased mobility related to retail and recreation (0.07 per 10% less mobility, p < 0.008).

Conclusions: In a Western population unaware of the risk, SARS-CoV-2 can be highly contagious with a
reproduction number R0 > 5. Our results are consistent with evidence that recreational activities (including
restaurant and bar visits) enable super-spreading events. Exiting from lockdown therefore requires continued
physical distancing and tight control on this kind of activities.
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Background
In February–March 2020, it became clear that the
COVID-19 pandemic had been introduced in Europe
and Northern America [1] and governments and soci-
eties responded in various ways to slow down the spread
of the virus. In the containment phase, testing, contact-
tracing and individual quarantine of (suspected) infected
individuals are crucial to prevent a widespread epidemic.
If this fails, mitigation measures consist mainly of mobil-
ity restrictions and encouraged or mandated physical
distancing to everyone regardless of symptoms or testing
results (jointly called lockdown).
Failing containment, most European countries man-

aged to curb the epidemic by May through lockdown
measures (timeline and details of measures in the differ-
ent countries [2]), however without fully understanding
which of the different measures had the strongest im-
pact. Because of economic and social implications of a
lockdown, governments have been cautiously relaxing
measures while trying to avoid a new peak by closely fol-
lowing the effect on the epidemics through testing and
monitoring hospitalizations and casualties [3]. Coming
out of lockdown entails a return to containment mea-
sures, with testing, contact tracing and quarantine again
being crucial.
To understand the evolution of the COVID-19 epi-

demics, to estimate the impact of testing strategies and
interventions and to estimate key epidemiological pa-
rameters, epidemiological models have been widely used
[4–8]. Epidemic spread is determined by both biological
properties of the virus as well as the behavior of the host
population, and this is reflected in the epidemiological
parameters. One important parameter, the time-varying
basic reproductive number Rt, determines whether an
epidemic is exponentially growing (Rt > 1) or declining
(Rt < 1). The goal of both containment and lockdown
measures is to bring Rt below 1 by changing the behav-
ior of the infected, respectively, susceptible population
through reducing their contact networks.
In early 2020, the population in Western countries

started to develop an increased awareness as soon as
media reported on the epidemic unfolding in Lombardy
(Italy), and this led to a gradual response ranging from
voluntary physical distancing to government imposed
mandatory self-isolation upon showing symptoms, ban-
ning of public events, and encouraging physical distan-
cing, with ultimately a drastic lockdown when many
businesses and schools were closed and mobility was se-
verely restricted [9]. The diversity of measures and their
timing gives us the opportunity to investigate which re-
sponses were correlated with a better outcome. How-
ever, reliable data quantifying the impact on human
behavior of various country-dependent specific lock-
down measures is currently lacking.

Attempts to create such data sets face challenges such
as variation in compliance to imposed measures, and the
unknown level of measures taken by individuals or orga-
nizations in absence or anticipation of government regu-
lations. Rather than an account of the ordered measures
in each country, we used mobility changes extracted
from smartphone location data as an objective indication
and quantification of the lockdown (Suppl 1).
To quantify the impact of various aspects of non-

pharmaceutical interventions in response to the epi-
demic, we estimated in this study the change in trans-
mission over time using incidence data of deaths and
diagnosed cases in 35 countries (ECDC data downloaded
on 6 June 2020, see Suppl 2), differentiating between the
effect of measures that preceded the lockdown, and the
effect of the lockdown itself. The change in transmission
during lockdown was further analyzed by testing for cor-
relation with the estimated reductions in six mobility
categories. Only data up to 60 days into the lockdown
(up to about mid-May in European countries) were used
to avoid the confounding effect of the gradual lifting of
restrictions, which started in many European countries
in May.

Methods
In order to obtain comparable estimates of Rt, a simple
SEIR compartment model was used, with epidemio-
logical parameters that model biological properties (la-
tent period, infectious period duration), or that were of
less importance to the study (infection fatality rate), kept
constant. Parameters that model transmission rates were
allowed to change from an initial estimated value Rt,0
during a transition period, which was also estimated
from the data, to Rt,1 until the day that mobility changes
started, and then to Rt,2 during the lockdown identified
on the basis of mobility data, using a piecewise linear
model (Fig. 1a and Methods). Although the introduction
of mobility restrictions coincided with other measures
including behavioral changes, in the manuscript we use
“mobility changes” to indicate the combination of mobil-
ity restrictions and behavioral changes that happened at
the time of “lockdown”, versus “behavioral changes” that
we use for changes that have led to a reduction in trans-
mission prior to the lockdown.
The following equations describe the dynamics of indi-

viduals in each of the four compartments of a standard
SEIR model (see Fig. 2):

dS
dt

¼ −βIS
N

dE
dT

¼ βIS
N

−σE
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Fig. 1 Model for changes of the time-varying reproduction number Rt as a piece-wise linear function. Dates d1 and d2 were estimated from
mobility data. Date d0 and values for Rt,0 – Rt,2 were estimated from incidence data on diagnosed cases and deaths. a. model-2 used for all
countries; b. model-3p additionally used for Slovakia, which allowed an extra change during lockdown with dates d0, d3 and d4, and values for Rt,0
– Rt,3 estimated from incidence data on diagnosed cases and deaths

Fig. 2 Structure of a standard SEIR compartment model with four compartments: susceptible (S), exposed (E), infectious (I), and removed
(recovered or deceased, R). Susceptible individuals become latently infected by infectious individuals, with transmission rate β. Latently infected
become infectious at rate σ. Infectious people are removed at rate γ
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dI
dt

¼ σE−γI

dR
dt

¼ γI

The differential equations of the SEIR compartment
models were numerically integrated using deSolve [10].
The duration of the latent period Tlat = 1/σ was fixed to
3 days, and the infectious period Tinf = 1/γ to 5.2 days
[11, 12]. Sensitivity of the results to other parameter
values (Tlat = 2 or 4 days, and Tinf = 4.5 or 5.9 days) were
conducted.
The dates d1 and d2 which mark the transition period

for mobility changes were estimated from mobility data
reports [13], by fitting a step function with a linear tran-
sition period through the sum of mobility changes re-
lated to transit stations and workplaces (see Suppl 1).
This was motivated by the adoption of teleworking as a
measure in most countries, even in those (like Sweden)
which had the lightest lockdown regimen. The value for
β was modeled as a piece-wise linear function of time
(Fig. 1a). To verify that the assumption that mobility
changes leading to the lockdown were the final measure
to control transmission, models were also estimated
which allowed a further reduction in transmission dur-
ing lockdown to a value Rt,3 (assuming a prior distribu-
tion Rt,3 − Rt,2 =N(0, 0.3) expressing no change with
respect to Rt,2), with a linear transition between co-
estimated dates d3 and d4 (see Fig. 1b). The statistical
support for these more complex models was evaluated
using Deviance Information Criterion.
We wanted a model that does not require independent

estimates for the timing or number of introductions per
country. Instead, the models were seeded with an initial
single exposed individual and it was assumed that the es-
timated date d0, marking the first change in value of β,
was linked to a co-estimated threshold for cumulative
deaths. This method had the benefit of avoiding any bias
on estimated R0 values because of assumptions on intro-
duction time and numbers, while being more efficient to
sample than time of first infection.
To estimate the model parameters, incidence data of

diagnosed cases and deaths was used (ECDC, https://
opendata.ecdc.europa.eu/covid19/casedistribution/csv,
accessed on 6 June), within a Bayesian framework. The
daily incidence of diagnosed cases and deaths was com-
pared to the predicted numbers using a negative bino-
mial distribution, and assuming a Gamma distribution
for infection-to-test and infection-to-death intervals.
Taking advantage of the assumed timing of lockdown
dates, the gamma distribution parameters (shape and
scale) were co-estimated for each country (see Suppl 3).
The posterior distributions of model parameters were

estimated in R using MCMC with Metropolis coupling
(20 chains at different temperatures) [14–17].
Suppl 3 Table 1 lists all parameters used in the models

and during the estimation from data, with their values
(either a constant, or a prior distribution for parameters
that were estimated).
To correlate mobility changes in the different categor-

ies reported in Google Mobility reports [13], with the es-
timated reduction in transmission estimated from the
incidence data, first we calculated the mean value in
each of mobility category before date d1 (before the start
of reduction in mobility) and after d2 (the start of the
lockdown period). We then used univariate and multi-
variate linear models to estimate the effect of mobility
changes on the reproduction rate of the epidemic, for
each mobility category separately, and for all of them to-
gether. Collinearity was assessed by calculating
covariance-inflation factors [18]. All data files, R scripts
and analysis steps are described in Suppl 2. All data used
for the analyses were obtained from published databases.
No additional data were collected.

Results
The estimated models fitted well the reported incidence
data for most countries (see Suppl 4). The time between
infection and reported death was estimated as a Gamma
distribution with mean 26 days but with considerable
variation between different countries (95% IQR 16–32,
Suppl 3 Table 3). Across all countries, the median of
posterior estimates for Rt,0 was 3.6 (95% IQR 2.4–5.2)
(see Fig. 3a, Suppl 3 Table 2). Before changes in mobility
were observed (d1), the reproduction number was re-
duced to 2.2 (95% IQR 1.7–3.3). During lockdown,
transmission was further reduced to 0.78 (95% IQR
0.58–1.01). Only for Belarus and Moldova, the median
estimates of Rt,2 were slightly above 1, and for Bosnia
and Herzegovina, Poland and Sweden, the 95% CRI did
not exclude a value of Rt,2 above 1, while all other coun-
tries had the Rt,2 value below 1. Comparing the esti-
mated reproduction number during lockdown Rt,2 with
the initial reproduction number Rt,0 in each country, we
found that 48% (18–65%) of the reduction occurred be-
fore lockdown, and the remaining 52% (35–82%) associ-
ated with mobility changes during lockdown.
We estimated that the date d0 of the first decline in

transmission preceded observed mobility changes by on
average 6 days (95% IQR -6 – 12) (Fig. 3a). Although the
semantic meaning given to d0 (first date of decline of R0,
before mobility changes), assumed that it would be esti-
mated before d1, this order was not enforced. For
Slovakia, the estimated model placed this date around
27 March (95% IQR 21 March – 5 April), later than the
dates d1 and d2 that mark the mobility changes period
(10–17 March). At the same time, a suspiciously low
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Fig. 3 (See legend on next page.)
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value of 1.8 (95% IQR 1.0–2.7) for Rt,0 was estimated.
Both observations indicated that the assumption that
mobility changes leading to the lockdown were the final
measure to control transmission, was not applicable to
data of Slovakia. We therefore re-estimated a model
which allowed a further reduction in transmission to a
value Rt,3. This model estimated an additional reduction
of Rt around 3 April (95% IQR 27 March – 8 April,
Fig. 4), reducing transmission with 50% (95% IQR 36–
59%) from 0.92 (95% IQR 0.81–1.14) to 0.50 (95% IQR
0.43–0.56). In further statistical analyses, the parameters
estimated for this latter model were used only for
Slovakia.
To investigate how mobility changes correlate with the

reduction of Rt during lockdown, Google Mobility report
data were used. These reports define the mobility change

for six categories, compared to a baseline defined as the
median mobility in January (Fig. 5). For all six mobility
categories, mobility during lockdown was significantly
different compared to mobility in the few weeks before
lockdown (Wilcoxon paired test p < 0.01, data not
shown). Mobility before lockdown was similar to the
baseline with 95% IQR ranges of − 6 to 6%, with the ex-
ception of mobility related to parks which showed
already a median increase of 10% (95% IQR 3–19%)
compared to January. The latter may be expected since
park visits are less common during the winter. Mobility
changes for each category showed the same trend in all
countries, again with the exception of mobility related to
parks which was increased or decreased depending on
the country (Fig. 5). As a consequence, each mobility
category can explain a large part of the variation in Rt,

(See figure on previous page.)
Fig. 3 a. Posterior estimates of the initial basic reproduction numbers (Rt,0), the reproduction number at start of lockdown (Rt,1) and during
lockdown (Rt,2). b. Estimated median values (95% IQR) for d0 (date of first reduction in transmission, presumably due to physical distancing,
estimated from incidence data of deaths and diagnosed cases); and lockdown transition start and end dates d1 and d2, estimated from mobility
data (see also Suppl 1)

Fig. 4 Estimated time-varying basic reproduction number Rt for Slovakia using a model that allowed an additional reduction of transmission rate
at a co-estimated date during lockdown. The orange and red lines mark d1 and d2 as estimated from google mobility data. For reference, the
date at which mandatory mask wearing was introduced (25 March) is indicated in blue
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even in absence of a causal relation. To overcome this
difficulty in identifying the causal factors driving the
change, we correlated the final (lowest) reproduction
number Rt,2 during lockdown (rather than the change in
Rt) with variation in mobility changes during lockdown.
Lower Rt,2 values during lockdown were significantly

associated with a larger mobility reduction related to re-
tail, recreation, and workplaces, and a longer time spent
in residential places (Fig. 5, Table 1). The associations of
mobility reduction related to retail and recreation, and
residential places remained significant in a multivariate
model which explained 47% of variance (adjusted R2) of

Fig. 5 Average percentage change in mobility, compared to baseline, for six location Google mobility categories. Color reflects basic
reproduction number Rt during lockdown. Retail and Recreation: restaurants, cafes, shopping centers, theme parks, museums, libraries, and movie
theaters; Grocery and Pharmacy: grocery markets, food warehouses, farmers markets, specialty food shops, drug stores, and pharmacies; Parks:
local parks, national parks, public beaches, marinas, dog parks, plazas, and public gardens; Transit Stations: public transport hubs such as subway,
bus, and train stations; Workplaces: places of work; Residential: places of residence. To avoid overloading the Figure, only countries which were
mentioned in the Results and Discussion in the context of the estimated effectiveness of their lockdown, were highlighted here

Table 1 Univariate and multivariate associations of mobility changes during lockdown (per 10% mobility change) with the basic
reproduction number R t,2 during lockdown. Mobility data related to workplaces were left out from the multivariate analysis since
this variable was highly correlated with mobility data related to residential places and transit stations (variance-inflation factors > 8)

Variable Univariate estimate Multivariate estimate

Retail and recreation 0.04 +/− 0.01 (p < 0.01) 0.07 +/− 0.02 (p < 0.008)

Grocery and pharmacy 0.01 +/− 0.02 − 0.02 +/− 0.03

Parks 0.002 +/− 0.006 −0.021 +/− 0.009 (p < 0.03)

Transit stations 0.03 +/− 0.02 − 0.06 +/− 0.03 (p = 0.096)

Workplaces 0.05 +/− 0.02 (p < 0.02)

Residential − 0.11 +/− 0.04 (p < 0.009) −0.21 +/− 0.07 (p < 0.007)

Rt,1 0.04 +/− 0.05 0.06 +/− 0.04
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the Rt,2 value during lockdown (p < 0.0008). Using this
model, we estimated that, in 35 Western countries,
reductions of mobility related to retail and recreation
during lockdown caused a mean reduction of Rt of
0.45 (95% CI 0.13–0.76), or thus an average reduction
of 20% (95% CI 6–34%) in transmission, and in
addition more time spent in residential places (pre-
sumably instead of going to school or work) caused a
mean reduction of Rt of 0.41 (95% CI 0.12–0.68) or
thus an average reduction of 18% (95% CI 6–31%).
Increased mobility related to parks may be an indica-
tor of social restrictions in visiting friends or family,
and explained up to 5% (95% CI 1–9%) of additional
reduction in transmission.
To verify that the relationship between mobility

changes and Rt,2 can also explain the large reduction in
Rt as a result of the lockdown, a multivariate model that
directly predicted the percentage change of Rt compared
to Rt,1 before lockdown, based on mobility changes be-
fore d1 and after d2, was also estimated (data not
shown). This model used two data points per country (at
date d1 and date d2) and had a high explanatory power
(R2 = 0.94) but as expected suffered from high collinear-
ity (with covariation-inflation factors over 100) and was
therefore not reliable in attributing and quantifying the
change of Rt to specific mobility categories. Nevertheless,
confirming the trends of the above findings, this model
attributed an estimated 40% (95% CI 20–58%) and 29%
(95% CI 13–44%) of the drop in R t during lockdown re-
spectively to a reduction in mobility related to retail and
recreation and staying at home (p < 10− 3).
Our findings are summarized in Fig. 6 and trends were

found to be robust to different assumptions of latent
period duration (in the range of 2 to 4 days), and differ-
ent assumptions of generation time (in the range of 4.5
to 5.9 days), see Suppl 3.

Discussion
By assuming that lockdown is associated with drastic
mobility changes, the timing of the lockdown in each
country was estimated from mobility data. Time-varying
reproduction numbers were then estimated for 35 coun-
tries resulting in country-specific estimates for the initial
reproduction number Rt,0, a reproduction number Rt,1 at
the beginning of mobility changes, and a Rt,2 during
lockdown. Estimates for Rt,0 are expected to vary de-
pending on setting, methodology and assumptions on
parameters (especially duration of infectious period and
generation time) and assumptions on how the number
may vary over time [7]. We find that our estimated
values for Rt,0 tend to be higher, and estimated values
for Rt,1 lower, compared to estimates in other studies for
R0 of around 2.7. Our estimates for Rt,0 are similar to R0

estimates obtained using models that also consider inter-
ventions that preceded a full lockdown [9]. For the initial
reproduction number Rt,0, substantial variation between
countries was estimated. In particular, in European
countries with the earliest outbreaks, high values of 5.7
(95% cri 5.0–6.7) for Italy and 6.0 (95% cri 5.2–7.2) for
Spain were found, reflecting the high level of transmis-
sion of this virus in a Western population that is mostly
unaware of the risk.
During a period of on average 6 days before lockdown,

less invasive measures such as the mandatory self-
isolation upon showing symptoms, banning of public
events, and encouraging physical distancing may have
contributed to a decline in transmission (there was no
substantial decline in mobility during this period). We
found that about half of the reduction in transmission
happened during this period before lockdown, possibly
as a consequence of behavioral changes which may in-
clude increased hand hygiene, physical distancing and
encouraged or mandated self-isolation and measures

Fig. 6 Summary of estimated contributions to the reduction of transmission in 35 Western countries. Initial basic reproduction numbers (Rt,0), the
reproduction number at start of lockdown (Rt,1) and during lockdown (Rt,2), and percentage reductions are shown as median values and 95% IQR.
Estimates for individual countries (Italy, Spain and Slovakia) are shown as median posterior value and 95% cri
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such as prohibition of public events. This is in contrast
with the conclusions of Flaxman et al [9] who attributed
81% (75–87%) of the reduction in transmission to lock-
down, and only limited contributions of other measures.
However, for one country (Sweden), they assumed no
lockdown and attributed over 80% of the reduction in
transmission to the banning of public events, which is at
odds with the finding that this same measure had a neg-
ligible contribution (< 5%) in other countries. Further-
more, their results were found to be highly sensitive to
the assumed order of interventions [19]. In our analyses,
the estimated value for Rt,2 for the epidemic in Sweden
was found to be relatively high (1.00, 95% cri 0.96–1.04),
but this value was equally well explained based on mo-
bility changes. This suggests that, although not enforced,
in practice the Swedish population reacted similarly to
the epidemic, but to a lesser extent, compared to other
Western countries.
For several countries (Finland, France, Greece, Italy,

and Sweden) the initial reduction in transmission was
estimated near the end of February and might have been
a result of awareness raised by the discovery of the first
European cluster around that time in Lombardy, Italy.
Three countries with a high estimated R0 > 5 (Spain,
Italy, and Belgium) were also the countries in Europe
with the highest excess mortality during this period
(https://www.euromomo.eu/graphs-and-maps), suggest-
ing that the high mortality rate in these countries may in
part be explained by a high transmission rate in these
countries even before awareness was raised by the discov-
ery of the outbreak in Lombardy beginning of March, and
thus not necessarily because of a too late or less effective
reaction in response. With regard to Belgium, several lines
of evidence suggest that the virus had already entered the
country before the end of February [20].
The assumed time interval distribution between infec-

tions and deaths is essential to correlate changes in
transmission rates with incidence data of deaths. By as-
sociating the changes in transmission rate with changes
in mobility data, parameters for Gamma distributions
were coestimated for each country. The estimated me-
dian mean time (26 days) was comparable with earlier
estimates (21 days) based on clinical data [9], but showed
considerable variation between countries which may re-
flect differences in clinical and reporting practices.
To explore sensitivity of our findings to assumptions

on the duration of the latent period and infectious
period, sensitivity analyses were conducted. These ana-
lyses suggested that an incubation time of 2 days rather
than the assumed 3 days is more realistic based on more
robust associations with mobility data. Using an esti-
mated incubation period of around 5 days [21], this also
implying that the average period of presymptomatic
transmission is 3 days.

For Slovakia, an additional reduction in transmission
during lockdown was found to have occurred at the be-
ginning of April, and this followed shortly after the
introduction of mandatory face masks use in Slovakia on
25 March [22]. This would imply that using face masks
reduced transmission by half. This finding may however
be sensitive to a violation of model assumptions since
for 10 other countries a significant (but smaller) reduc-
tion in transmission during lockdown was also estimated
(Suppl 3 Table 4), seemingly uncorrelated to additional
measures adopted in these countries.
Because most mobility restrictions coincided in time,

it is challenging to identify those mobility changes that
contributed most to the reduction in transmission. In
our analysis, because of correlation, the potential effect
of a lower mobility related to workplaces could not be
disambiguated from the general effect of increased time
spent in residential places. The fact that in addition to
more time spent in residential places, a reduced mobility
related to retail and recreation was significantly associ-
ated with Rt both in univariate and multivariate analyses,
suggests that activities related to visiting malls, bars, res-
taurants, or museums are linked to increased transmis-
sion and releasing those mobility restrictions should be
done with care since they may carry a high risk for re-
igniting the epidemic. This is in line with mounting evi-
dence of transmission being promoted by (loud)
speaking or singing (bars, choir [23]), and longer time
spent in densely populated indoor locations with low air
circulation (bars, restaurants, malls, events with mass
gatherings [24]) [25, 26]. The remaining reduction of Rt

during lockdown may still be related to mobility changes
of other types of mobility currently not reported by
Google (for example mobility related to schools) or
would require further refinement of categories to be-
come observable. Alternatively, other types of changes
that coincided in time with these mobility changes could
be responsible.
Despite the large impact of mobility restrictions and

business closures on society, the implementation of cer-
tain measures may need to be maintained for a long
time and should thus be as fine-grained and optimally
chosen as possible. Therefore, the confirmation and
quantification of how measures reduce transmission
have been studied using diverse approaches in terms of
data sets and methods [8, 19, 27–29]. Our results largely
confirm findings of these other studies.
This study has several limitations. The use of a com-

partment model in conjunction with a piecewise linear
model for Rt is necessarily an approximation, and more
complicated temporal changes in transmission may have
occurred in reality, but still it served the purpose of
examining the impact of different measures over time.
Epidemiological parameter estimates may have been
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impacted by shifts in age distribution of cases over time,
given that COVID-19 has a distinct age risk profile, and
also by variation in data accuracy between countries. By
limiting the study to Western countries which coincided
more or less in time, differences related to culture, cli-
mate, and google mobility data interpretation, may have
been less of a confounding factor. Finally, the effect of
the stringency of the mobility restrictions was not evalu-
ated as it is hard to measure in an objective way.

Conclusions
In a Western population unaware of the risk, exempli-
fied by Italy and Spain being the initial European coun-
tries to have been hit by the epidemic, SARS-CoV-2 is
highly transmissable with reproduction numbers R0 > 5.
Behavioral changes and measures such as restricting
large gatherings can already reduce transmission by half.
Next to increased time spent at home, in general, the re-
duction of recreational activities (including restaurant
and bar visits) was identified as contributing most to the
reduction in transmission during lockdown. Our finding
that nearly half of the reductions in transmission oc-
curred before lockdown indicates the importance of be-
havioral patterns that are independent of state-imposed
restrictions. This finding underlines the danger of
‘COVID-19 fatigue’ – the increased difficulty over time
to maintain the behavioral routines that are needed to
minimize the transmission of the virus. All efforts should
be made to increase awareness of the importance of in-
dividual decisions and risk avoidance in the continued
fight against the pandemic. Exiting from lockdown
therefore requires continued physical distancing and
tight control on circumstances that facilitate massive
spread such as large gatherings especially indoors.
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