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Abstract

Background: In recent years new forms of syndromic surveillance that use data from the Internet have been
proposed. These have been developed to assist the early prediction of epidemics in various cases and diseases. It
has been found that these systems are accurate in monitoring and predicting outbreaks before these are observed
in population and, therefore, they can be used as a complement to other methods. In this research, our aim is to
examine a highly infectious disease, measles, as there is no extensive literature on forecasting measles using
Internet data,

Methods: This research has been conducted with official data on measles for 5 years (2013-2018) from the
competent authority of the European Union (European Center of Disease and Prevention - ECDC) and data
obtained from Google Trends by using scripts coded in Python. We compared regression models forecasting the
development of measles in the five countries.

Results: Results show that measles can be estimated and predicted through Google Trends in terms of time,
volume and the overall spread. The combined results reveal a strong relationship of measles cases with the
predicted cases (correlation coefficient R= 0.779 in two-tailed significance p< 0.01). The mean standard error was
relatively low 45.2 (12.19%) for the combined results. However, major differences and deviations were observed for
countries with a relatively low impact of measles, such as the United Kingdom and Spain. For these countries,
alternative models were tested in an attempt to improve the results.

Conclusions: The estimation of measles cases from Google Trends produces acceptable results and can help
predict outbreaks in a robust and sound manner, at least 2 months in advance. Python scripts can be used
individually or within the framework of an integrated Internet surveillance system for tracking epidemics as the one
addressed here.

Keywords: Syndromic surveillance, Measles, Linear regression, Forecasting, Programming languages, Computational
science
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Background

Syndromic surveillance is concerned with the monitor-
ing of emerging infectious diseases. It is a key element in
public health, in order to track, estimate, predict and
prevent the threats of prevalent outbreaks among popu-
lation for various infections. Novel tools use Web-based
methods and Internet data for major infections that can
be transmitted from person to person in a place or be-
cause of various factors of modern way of living, such as
frequent travelling or events gathering large numbers of
individuals.

Although medical science has advanced regarding
treatment, pathogen discovery or diagnostics, infections
can be widely spread and cause severe health problems.
On the other hand, modern technology has introduced
new methods and tools. From 2004 [1], a steady use of
Internet-surveillance systems can be observed. Rees
et al. (2019) [2] describe this new form of surveillance as
a new generation of surveillance strategi&shristaki
(2015) [3] analyses modern trends of Internet-based sur-
veillance, taking advantage of computational science
methods. Web queries, Google Trends [4], Google Flu
Trends [5], event-based surveillance, remote sensing
technology, social media communications and mobile
phones are examples of the new trend of using technol-
ogy to supplement other methods of monitoring and
alerting about infections and outbreaks. Until today,
various diseases have been tested using those ap-
proaches, including influenza, Ebola virus, HIV/ AIDS,
Dengue fever and many others.

Measles is a case that has not been extensively exam-
ined in relation to Internet surveillance, although its
spread is considered as quite substantial and its implica-
tions are also severe. According to the World Health
Organization (WHO) [6], measles is considered one of
the most infectious diseases and can cause a great num-
ber of cases, as well as deaths. While measles mainly af-
fects children under 15years of age, the transmission
can be also be spread in adults. WHO’s 2000 estimation
of children deaths was 535,000 worldwide. Most of them
occurred in developing countries and this burden
accounted for 5% of all under-five mortality [7]. WHO
reveals that prior to the availability of measles vaccine,
measles infected over 90% of children before they
reached the age of 15. These infections resulted in more
than two million deaths and between 15,000 and 60,000
cases of blindness annually worldwide.

Although WHO recognizes that measles continues to
be a problem in developing countries, in the United
States (US) the implications are also important. The US
Centers for Disease Control and Prevention (CDC) esti-
mate in their latest report [8] that during the pre-
vaccine era (before 1963), each year measles caused 3 to
4 million cases, of which 500,000 were reported to CDC.
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In modern years though, many cases are observed in the
US. Only in 2016, over 650 cases are officially reported.
The CDC final estimation is that these cases result in
hospitalization for 25% of cases, encephalitis (inflamma-
tion of the brain) for 0.1% and death to 0.1-0.2% of the
cases. Despite the significant progress of medicine and
vaccination, during the last years, CDC believe that mea-
sles remains a leading cause of vaccine-preventable in-
fant mortality.

The cost burden of measles treatment and
hospitalization also remains high. WHO states that for
measles and rubella the annual cost estimation in 2004
confirmed continued cost-savings associated with the
current US 2-dose Measles, Mumps, and Rubella
(MMR) routine vaccination schedule and estimated an-
nual net benefits exceeding US$ 9.7 billion [9]. For US
alone, WHO estimated a net saving for the WHO Re-
gion of the Americas of over US$ 282 million
(US$2011), just for the year 2011. CDC estimate in their
latest report that, for 107 cases in 2011, the number of
cases (outbreaks) resulted to a public financial burden of
2.7—-5.3 million USS.

In the European Union/ European Economic Area
(EU/EEA), the European Centre for Disease Prevention
and Control (ECDC) [10] recorded 36 deaths during the
last 3 years. While measles recorded a high outbreak in
the EU/EEA during the years of 2010-2011 with an
average of 30,000 cases in all 30 countries, from 2012
until 2017 the measles activity was relatively low. How-
ever, the infection activity started to rise from 2017 and
over 10,000 cases are annually reported since that year.

Google Trends have been used to a large extend to
track epidemics. Along with social media (e.g., Twitter),
it is the most common and easy to use data source. Dur-
ing the last 3 years, Google Trends were used to predict
syphilis (2018) [11], respiratory syncytial virus (2018)
[12] and vaccination (2017) [13]. The last research is a
direct reference to vaccines, but indirectly relates them
to infectious diseases. Furthermore, forecasting methods
were used for Dengue fever (2016) [14] and AIDS (2018)
[15]. For measles, a recent study [16] examines the use-
fulness of Facebook and Twitter posts (2017) to the
consistent social media engagement by individuals ex-
pressing vaccine hesitancy, contrasted with media. The
researchers of the study conclude that the association of
social media and vaccination may result from more
consistent social media engagement by individuals ex-
pressing vaccine hesitancy, contrasted with media- or
event-driven episodic interest on the part of individuals
favoring current policy.

Considering all the above, the scope of this study is:

e To assess the feasibility to predict measles using
Google Trends data.
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e To contribute to the research of the Internet
surveillance systems on measles.

e To evaluate prediction methods and techniques,
based on specific criteria.

e To improve the accuracy of prediction for countries
with a low impact of measles, by using additional
techniques

The rest of this paper is structured as follows, Section
“Methods” describes the data and methods used. In Sec-
tion “Results”, results and analysis are provided and fi-
nally, in Sections “Discussion” and “Conclusions” we
provide the discussion and the main conclusions on this
work respectively.

Methods

The research was conducted in three stages: specifica-
tion of research questions and evaluating criteria, data
acquisition and finally, data analysis, interpretation of
the results and conclusions. Specifically, we wanted to
test whether a linear regression model can be applied or
not and in which cases provides the ability to track and
predict measles in the countries of Europe with the lar-
gest population. Based on the abovementioned aims of
this research, the research questions and the evaluation
criteria were set as described in Table 1. These questions
identify the major aspects of our analysis and help in de-
termining the criteria to evaluate the current method-
ology and the proper model to use. It is also significant
to notice that for the last criterion, the desired value
must be lower than 28%, relative to each country.

As described below, we used linear regression over the
data for all the countries. However, some countries re-
quired testing alternative methods to achieve a better
quality.

The rest of this section describes the data used (“Data
sources”), and the linear regression used as a model
(“Linear regression”). Then, in subsection “Model
enchancement testing”, the additional modeling used for

Table 1 Research questions and Evaluation Criteria
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the above-mentioned countries that required an alterna-
tive is described.

Data sources

We used two data sets. The first comes from the ECDC
official web site, which publishes monthly reports on
measles. ECDC monitors 30 countries of the EU/EEA
and publishes reports with cases of measles each month.
Each report includes data with a 2 months lag, e.g. the
report of October 2018 has information and data until
August 2018.

We created time series of the 5 years from October
2013 to August 2018 (59 months). We selected the
countries with the most population of Europe because
we noticed that for other countries there were a high
number of zero cases or missing data. Therefore, we de-
cided to use data from Italy, France, Germany, the UK
and Spain. These five countries represent 323,256,460
people [17], 62.30% of the total population of the EU/
EEA, nearly the population of the US, while the aggrega-
tion of measles cases in these countries are 21,015,
meaning the 53.72% of the total cases in all countries.

The second data set was from Google Trends for the
same period. Google Trends publishes the search vol-
ume on terms that are submitted to Google search en-
gine for one or more specific keywords. As Google
Trends state, Google Trends data is an unbiased sample
of Google search data and only a percentage of searches
are used to compile trends data [18]. The data sources
of Google Trends are derived from real-time data from
the previous 7 days (weekly data) and non-realtime data
coming back from 2004 on monthly basis. This search
volume is scaled from O to 100 and, on the web plat-
form, data up to five past years are shown weekly, while
data from 2004 are presented monthly. The values of
this scale of 0—100 may be sometimes revised, adjusted
and corrected by Google. Nevertheless, the differences
are not so large and would cause no different results.
Google explain the overall adjustment procedure and
how this scale 0—100 is produced [19]. Since we did not

no Research Question (RQ)

Evaluation Criteria (C)

1 The predicted cases show a strong correlation
with the real cases

cl-Correlation: The correlation between measles cases and predicted cases must exceed
0.650 and must also be statistically significant. The significance level (p) was set to be <0.01

in two-tailed significance

2 The prediction shows the right time of measles’
outbreaks

3 The predicted value of outbreaks is close to the
real cases

4 The prediction includes all periods with excessive
activity of measles (outbreaks)

5  The error of the estimate (MSE%) is smaller than

c2-Time: The prediction point of measles outbreaks must not exceed one month in relation
to the real cases and must not be observed after the outbreak

c3-Volume of predicted cases during outbreak periods: must not exceed 28% of the real
cases during outbreaks

c4-Outbreak predicted periods: the distributions of each prediction must include all
outbreak periods within the 5-year examined period

c5-Mean Standard Error (MSE): the MSE of all predicted cases must not exceed 28% of the
28% real cases mean
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use the web application of Google, but Python scripts,
we managed to acquire daily data and then we aggre-
gated them on monthly basis to match up with data on
measles.

Pythonis a flexible programming language often used
in these kinds of studies, e.g. in a recent one (2017) sci-
entists discussed and analyzed Python techniques in
combination with Google Search Trends to test three
cases [20]. To capture the data from Google, we used
Python scripts by applying Pytrends [21]. It uses the
localization system of the ISO 3166-1 alpha-Zstandard
[22]. We used the term measlesn each of the five lan-
guages of the five countries under examination. These
are the following: morbillo for Italy, rougeolefor France,
Masernfor Germany, measledor the UK and sarampion
for Spain. Initially, we used the term sarampion for
Spain, but the extracted dataset had too many zeros,
which would made estimation models unfeasible.

Linear regression

We performed single-parameter linear regressions for
each country using IBM SPSS v.23.0.0.0 64-bit. The Sim-
ple Linear Regression model (SLR) is a statistical method
that allows summarizing and studying of the relation-
ships between two continuous (quantitative) variables
[23]. The dependent variable in our model was the mea-
sles cases and the independent variable (predictor) is
Google data, as in the following equation:

Yt = b0+b1Xt+et (1)

where Y; =the value of measles cases, bg is the con-
stant of the model, b; is the model parameter and X; is
the independent value of Google search volume (pre-
dictor). The value €, stands for the error of the estimate
and we assume that & ~ N (0, ?).

As far as the Mean Standard Error and Mean Square
Error are concerned, there has been an argument since
many years regarding which metric provides the best ac-
curacy of prediction. For example, RA Fisher (1920) [24]
believes that, generally, the second can be better, but
sometimes the standard error may be more accurate. In
fact, both can assist the correlation procedure, while the
square error can be better when it comes to normal dis-
tributions or variance analysis. Temperature forecasting
has a scale that may be resemble to the normal probabil-
ity curve and it is similar all over the world. (Allan H.
Murphy (1988) [25]. In this case, the authors conducted
a research by using the square error. On the other hand,
square error is a larger number than the standard error,
which may misjudge estimations when we examine and
compare different scales (e.g., measles in different coun-
tries) or small data samples and, especially, when their
distributions are not alike the normal distribution.
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Finally, the standard error has the ability to adapt to the
size of the sample because of the square root of sample
cases, which is included in the denominator of the equa-
tion. In this way, it becomes ideal for small or very small
samples. We have, therefore, chosen to use the Mean
Standard Error in the case of measles.

The linearity of regression and homoscedasticity was
tested looking at residuals versus predicted values (re-
gression standardized predicted values versus standard-
ized residuals with Line — Loess Fitcurve). The
normality of residuals was diagnosed using histograms
and Normal P-P plots of standardized residuals, Normal
Q-Q Plots of standardized residuals with Line — Loess
Fit curve, and Kolmogorov-Smirnov and Shapiro-Wilk
tests for residuals.

The time trend of residuals was examined using scat-
terplots of residuals versus order. The prediction for
each country was summarized using a comparative table
for each country with the metrics defined as evaluation
criteria.

Model enhancement testing

Based on the normal P-P plots for the standard resid-
uals, the derived forecasted values and the Pearson R
correlation coefficients, we checked the produced distri-
butions and we noticed that for the UK and Spain the
data looked very different and this was significantly indi-
cated by the residuals’ plots. Since the linear model for
the UK and Spain seemed not to show good results, we
investigated the feasibility of determining the real values
of them by constructing an approximate model. This
was based both on the predicted values of the linear
model for these two countries and the predicted values
of the other three countries, which showed to be more
accurate. Therefore, we used a comparative technique to
estimate the measles cases of the two countries by com-
bining and weighting both data from each country (UK
and Spain) and data from the three other countries, i.e.,
Italy, France and Germany. Our goal was to try to pre-
dict measles of the UK and Spain by using the above
combination and finally find out whether this approxi-
mation would improve the results or not. This proced-
ure is described as follows:

First, by using linear regressions, we calculated the
predicted (expected) values for Italy (E (1)), France
(E(2)) Germany (E(3),), the UK (E(4)) and Spain
(E(3)).

We then aggregated values for each month. The aggre-
gated variable for each month (t) is named E (sum). The
same was done for the Google values with a new variable
G (sum),. This is shown in the following equations:

E(sum)t = E(l)t + E(Z)t + E(3)t (2)
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G(sum)t = G(l)t + G(Z)t + G(3)t (3)

E(1), E(2) and E(3) are the predicted values of mea-
sles cases, derived from the linear regression model for
each of the three first countries for every month (t) from
t=1 to 59. Respectively, G(1), G(2) and G(3) are the
measured values of Google for each of the three coun-
tries for each month t=1 to 59

With the following step, we performed a second esti-
mation for the UK and Spain. The rationale was to in-
crease the initially predicted values of the UK and Spain,
because they were too low, since the measles activity is
relatively low for these countries and for the given
period. This fact resulted to very low linear regression
predictions. This was achieved by increasing the values
from Google by using the following equations:

iv (|T)i+_zljv (FR; +Z[:Y (DE),

E,(UK), = G(UK), - - = G(UK), —
S G(UK), > G(UK);
(4)
iv am), +iv (FR) +§:Y (DE),
EAES, = G(ES, = L
ZG(ES, ZG<ES.
(5)
Where:

E,»(UK), and E,(ES), are the new expected values of
measles for the UK and Spain respectively (for every
month t=1 to n=59),

G (UK), and G (ES), is the values of Google for the
UK and Spain respectively for every month t=1 to 59,

t t

> G(UK);and > G(ES); stand for the aggregated

i=1 i=1
Google values from the beginning of the time series until
month t for the UK and Spain.

t
>2Y ( ); represents the aggregated predicted values
i=1

of measles for Italy, which were calculated by the linear
regression models, meaning the aggregation from the
first month until the current month t and analogously
for the rest two countries (FR, DE).

At the last step, the final predictions (E3), for the UK
and Spain for every month (t) were determined by com-
bining the initial estimations based on linear regressions
and the intermediate estimations, as shown in the fol-
lowing equations:

24E; (UK ), + 3+E5(UK),
5

E3(UK)t =
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2*E1 (ESt + 3*E2(E3t

- )

Es(ES; =

As it is shown from the above last equations, both esti-
mations are used weighted by 2 for the initial regressions
and by 3 for the intermediate estimations. As it is obvi-
ous, we do not use equal weighting between the Google
data of the three first and the last two countries, since
this way the model produces better precision. By using
this technique, the overall improvement of accuracy
(correlation) is about 5% for the UK and 6% for Spain.
The analogy of two was determined after we tried some
different values in order to improve the overall correl-
ation coefficients for these countries. The values that
were tested are provided in following Table 2.

For these countries, we also applied a three-parameter
Auto-Regressive Integrated Moving Average model with
exogenous variable (ARIMAX (p, q, d)). We applied this
model for the cases of the UK and Spain to find out
whether a better estimation can be achieved or not. We
then compared the predicted cases of this model to the
ones from the regression, as well as the errors (MSE) of
these two models.

In our case, we applied a model which includes the pa-
rameters for lag 0 of the Google data. The model that it
was finally used was an ARIMAX (0,1,0), as shown in
the following equation:

Yi = Yi1 +b(Xe Xe1) +e {t =1,2f 59} (8)

where Y; stands for the values of measles for the current
week (t), Yi.1 represents the measles values of the previ-
ous week, b is the model parameter, X, X1 are the pre-
dictors (values from Google) for every current and
previous week (t and t-1) and e, is the error of the
estimate.

Results

Combined results

Aggregating all predictions, we produced two combined
results, as shown in Figs. 1 and 2.

In Fig. 1, the vertical axis represents cases of measles
and the horizontal the time (years). Blue line shows real
cases and red line shows predicted cases. From this fig-
ure we can see that the correlation (coefficient R =0.757)
is strong at level of significance p<0.01 (two-tailed, p=

Table 2 Testing values for correlation improvement

no Ey E, Improvement (UK) Improvement (ES)
1 1 4 —-0.30% -0.32%

2 2 3 -1.21% -1.05%

3 1 1 0% 0%

4 3 2 512% 6.04%

5 4 1 1.20% 1.33%
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4.0224E-12) and the Mean Standard Error (MSE) is
16.74 (17.18%). Similar results with greater correlation,
but also with larger deviations are found for the combin-
ation of all five countries, as shown in Fig. 2.

Figure 2 shows all countries, including the UK and
Spain. Evaluating the distribution shown in the above
figure, in reference to the above-mentioned criteria, we
observe the following:

i) Correlation and significance: The correlation
coefficient is relatively high 0.779 and is significant
at the level p<0.01 (two-tailed, sig= 3.626E-13).

ii) Time accuracy: There are three periods with a
measles outbreak: in the first quarter of the year
2015, in the first courter of 2017 and at the same
period of 2018. In more detail, the predicted
outbreak of 2015 is shown in March, while the

iii)

actual one occurs in April. For the year 2017,
the predicted period coincides with the true
outbreak in March. For the last year of 2018, the
predicted outbreak is shown 1 month earlier in
March, instead of April. Year 2013 has no severe
measles outbreak for the three examined months
and, during the year 2014, the activity of measles
is close to the monthly five-year average (370.5).
This may be the reason that it is not predicted.
We, indeed, noticed that this occurs sometimes
when the true cases are close to the monthly
average of the entire time series or of a single
year. Nevertheless, it is not important since it is
near the mean of the cases.

Precision of high values: For each year, the results
are shown in Table 3. As shown in the table,
regarding outbreaks, the observed estimated
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Table 3 Real and predicted outbreaks of measles
Year

Real value Predicted value Difference Difference (%)

2015 710 794 84 11.86%
2017 1194 1030 -164 13.72%
2018 1438 1040 —398 27.68%
All years 3342 2864 —478 14.29%

difference (%) lays at the level of 11.86-27.68%,
which may be considered as acceptable.

iv) Prediction of all high values: As described above,
the predicted distribution includes all years which
show significant outbreak of measles; 2015, 2017
and 2018. During the years 2013, 2014 and 2016
the measles activity and impact are low, and no
significant outbreak is noticed.

v) Mean Standard Error: It is relatively small and is
observed 12.19%. for all months. Therefore, we
consider the prediction as good and we can safely
use it.

Results for each country and comparison

In this part of our research, we examined and compared
the similarities and differences for each country. To bet-
ter understand the results, we provide graphs of the dis-
tributions of real and predicted measles for each
country, but also the standard residuals plots, produced
by the regression procedure (Fig. 3). On the left side the
comparison of true (blue line) and predicted cases (red
line) and on the right, the normal P-P plots for residuals.

Measles in Italy has a very high activity in the first
quarter of 2017 and a smaller in the same quarter of
2018. As shown in the above figure, the predicted cases
are very close to the true cases and at the right time. In
2017, Italy faced a very severe outbreak, after a relative
medium activity in the first quarter of 2014. The impact
of measles infection resulted to over 900 cases in March
of that year. The prediction model provides a good esti-
mation, although with a slight lower volume of cases.
The correlation coefficient between measles cases and
predicted cases is 0.806 and it is statistically significant.
The mean error of the estimate (MSE), expressed as a
percentage, was estimated as 11.80%. The mean differ-
ence is very low at 0.80% (predicted mean 180.2 versus
179.6 of the real cases).

France has a different measles development. The most
cases are observed in 2018 but to a smaller extend of
760 cases during March of 2018. The prediction of this
outbreak is also good at 729 cases, predicted 1 month
earlier. The correlation is also high in this model with
the R coefficient to be measured as 0.779. The mean
standard error of the estimate is calculated as 21.88%,
but the mean of the cases is very close to the real ones
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(67.11, instead of 66.86) with a very small mean differ-
ence of 0.37%.

In Germany, the largest measles infection is observed
in the first quarter of 2015, peaked to 577 cases. The
predicted value is 622.72 with a difference of —4.05%,
observed 1 month earlier in March of that year. The cor-
relation of all values is statistically significant, and it is
0.676. The mean standard error is found to be 17.86%,
while the mean of the predicted cases is the same as for
the real cases (81.2) with no difference at all.

Looking at the graphs and the standard residual plots
of the three first countries, we found some major differ-
ences with the other two (UK and Spain). Both UK and
Spain have too low peaks of measles outbreaks, related
to the first three countries. UK has a maximum of 132
cases observed in the middle of 2016 (July), considering
that the population of the UK is close to Italy and
France and it is 20—25% smaller than Germany. Spain
has even lower measles cases. In March of 2014, the
highest activity of measles is observed with 77 cases. The
monthly average is much lower (10.36 cases). Further-
more, the normalized residual plot reveals another dif-
ference. In the upper right corner of the plots for the
UK and Spain, we can see that the residuals cross the di-
agonal line from the right side to over this line towards
the left.

These observations are the reason why we performed
additional research (the methods are described in Sec-
tion “Methods”) to establish prediction patterns for these
two countries. By doing so, we managed to achieve sig-
nificant correlations at level <0.01 (two-tailed), but this
was not enough, especially for the case of Spain.

The UK has its measles outbreak at the same period of
France, ie. in the first quarter of 2018, which is 201
cases. In addition, a relatively high value of measles (for
the UK, not for Europe) is also observed in the middle
of 2016 which represents 132 cases. The prediction
model has a correlation coefficient of 0.781, as much
high as for the previous countries, and it manages to
predict the outbreak of 2018. On the other hand, the
lower measles activity is not captured well since it is ob-
served 2 months earlier. The difference between real and
predicted peak for this period is not high (111.6 cases
predicted related to the actual 132 cases). The difference
expressed as percentage is — 12.12% and corresponds to
only 20.4 cases. The mean standard error is not exces-
sively high (26.90%), although higher, related to the first
three countries, but the mean error is significant
(95.79%) when it predicts a (monthly) mean of 65.6 cases
instead of 33.5 real cases.

Finally, for Spain, the prediction model was not good
enough, even though it predicts both the 2014 and 2018
high values of measles. The correlation coefficient R is
significant, but very low (0.322). Nevertheless, the
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maximum values are predicted almost well. For the
2014, the prediction shows 86.07, while the real cases
are 77. The difference is — 11.8 (- 15.31%) that may be
considered as acceptable, but the prediction is shown 2
months later in May of 2014, which cannot be consid-
ered as acceptable. In March of 2018, the high values are
respectively 48.95 and 52 and the difference is very low
(- 5.87%). For this period, the prediction is almost per-
fect and at the right time. However, the MSE for all
years is too high (151.60%). Additionally, before or be-
tween these two periods, additional predicted high
values are observed.

In the following Table 4, we summarize the results for
each county and for the combined values.

Diagnostic results

Linearity and homoscedasticity

This is tested by viewing the standardized predicted
values against the standardized residuals. This was done
with the use of the scatterplots, which also include the
Fit Line — Loess This line identically crosses between
the center of the observed residuals. In the graph below
(Fig. 4), we can see the scatterplots for all countries. It is
shown that all values cluster around zero (vertical and
horizontal axis), which is the case for the linearity of the
model. However, there are some extreme values of stan-
dardized predicted values over the value 1 of the hori-
zontal axis. The number of these values is mostly four of
five, but there are eight values for Spain. We may
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country Total Cases predicted predicted mean  Mean df R Mean standard Mean standard error
cases mean cases mean df (%) error %
all 21,861 3705 22,542 3821 103 312% 0.779 452 12.19%
Italy 10538 1786 10,630 180.2 16 087% 0806 21.1 11.80%
France 3945 66.9 3960 67.1 0,2 0,37% 0.780 146 21.88%
Germany 4791 812 4791 812 00 0,00% 0676 145 17.86%
UK 1976 335 3869 65.6 00 95.79% 0781 90 26.90%
Spain 611 104 1264 214 85 106.87% 0322 157 151.60%

assume that the linearity condition is fulfilled for all
countries, but maybe not for Spain and the UK.

We can almost say the same about the heteroscedasti-
city of the residuals. Even there are extreme values on
the right of each model, we cannot be sure that the het-
eroscedasticity is confirmed. This is because, even
though the values scatter on the right side, but on the
other hand they do not scatter equally, as on the left
side.

Normality of the residuals

We analyzed above the observations of Normal P-P plots
for standard residuals. In this section we further proceed
to some other tests to test the normality condition of
the residuals. In the following Fig. 5 we present the his-
tograms with the normality line.

From the above figure, we can see that the maximum
frequency of the standard residuals is located close to
the middle of the normal distribution line. Only in the
first graph on the left for Italy, the maximum frequency
is observed a little left from the center of the normal
line.

The normal Q-Q plots are shown in Fig. 6. Comparing
to the normal P-P plots, we can see that for the UK and
Spain, a considerable number of extreme values are ob-
served away for the fitted line on the left. It is almost the
same patter we noticed in the normal P-P plots. For
Italy, the observed values are very close to the fitted line
and for the rest of the countries, they gather close to
line, but at larger distance than Italy.

Finally, the Kolmogorov-Smirnovand Shapiro-Wilk
tests showed that the model is partially validated, since
the condition of the normality of the residuals is not sat-
isfied in all cases.

In Table 5, we can see the results of the Kolmogorov-
Smirnov and Shapiro-Wilk tests for residuals. We can
see that the combined results, as well as the results for
the three first countries fulfill all criteria. In general, in
our research, the residuals analysis did not reveal any
significant pattern. As expected, the results show that
this model is partly validated for all countries, but it was
individually validated for Italy, France, Germany and
partially for Spain.

The same can be said about the analysis versus order.
In the following Fig. 7 we can see that scatterplots do
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Fig. 5 Histograms for residuals against normal distribution

not reveal a specific pattern upwards or downwards, as
the residuals bounce randomly around the residual=0
line. The final evaluation of the defined criteria can be
summarized as in the following Table 6.

Time-series model test

The results show that the ARIMAX model cannot pro-
duce significantly better estimation compared to the SLR
model. In the following Fig. 8, we present the predicted
measles cases against the real values.

Comparing the two models with the SLR models, we
see that ARIMAX prediction is almost on par with those
of the SLR with a very little improvement. In the follow-
ing Table 7 we can see the comparison results.

Discussion

Epidemiology and forecast

The described results show the potential of using search
engine data to help predict the measles development
and its spread in the countries of the EU/EEA with the
largest population. The overall prediction model shows
statistically significant correlation between measles cases

and predicted values. Despite some deviations in time
and in volume, the measles outbreaks are captured well
through the suggested prediction models. On the other
hand, significant differences occur among the examined
five countries. As a general rule, countries with a rela-
tively low activity of measles show less efficient predic-
tion, such as Spain and secondly the UK. Another
reason that these deviations may occur, is that Google
search volume contains a sample of all searches made by
people. This may introduce a small degree of error only
for common search terms, and searches with a low over-
all volume can produce more variable results. This, of
course, does not mean that we cannot predict the high
activity on these countries, but the predictions have less
statistical significance and less accuracy.

Comparing measles in the EU/EEA with the US is
possible, since the population of the examined large
countries and the US are equivalent. The largest five
countries of the EU/EEA represent 323,256,460 popula-
tion estimated for 2018 and the US has 328,863,150 (est.
2018) [26]. However, it seems that measles is a greater
problem in Europe than in the US during the period

Fig. 6 Normal Q-Q Plots for residuals




