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Abstract

Background: A recent study found that the gut microbiota, Lactobacillus and Bifidobacterium, have the ability to
modulate the severity of malaria. The modulation of the severity of malaria is not however, the typical focal point of
most widespread interventions. Thus, an essential element of information required before serious consideration of
any intervention that targets reducing severe malaria incidence is a prediction of the health benefits and costs
required to be cost-effective.

Methods: Here, we developed a mathematical model of malaria transmission to evaluate an intervention that
targets reducing severe malaria incidence. We consider intervention scenarios of a 2-, 7-, and 14-fold reduction in
severe malaria incidence, based on the potential reduction in severe malaria incidence caused by gut microbiota,
under entomological inoculation rates occurring in 41 countries in sub-Saharan Africa. For each intervention
scenario, disability-adjusted life years averted and incremental cost-effectiveness ratios were estimated using
country specific data, including the reported proportions of severe malaria incidence in healthcare settings.

Results: Our results show that an intervention that targets reducing severe malaria incidence with annual costs
between $23.65 to $30.26 USD per person and causes a 14-fold reduction in severe malaria incidence would be
cost-effective in 15–19 countries and very cost-effective in 9–14 countries respectively. Furthermore, if model
predictions are based on the distribution of gut microbiota through a freeze-dried yogurt that cost $0.20 per
serving, a 2- to 14-fold reduction in severe malaria incidence would be cost-effective in 29 countries and very cost-
effective in 25 countries.

Conclusion: Our findings indicate interventions that target severe malaria can be cost-effective, in conjunction with
standard interventions, for reducing the health burden and costs attributed to malaria. While our results illustrate a
stronger cost-effectiveness for greater reductions, they consistently show that even a limited reduction in severe
malaria provides substantial health benefits, and could be economically viable. Therefore, we suggest that
interventions that target severe malaria are worthy of consideration, and merit further empirical and clinical
investigation.

Keywords: Plasmodium falciparum, Malaria, Severe malaria, Cerebral malaria, Anemia, Gut microbiota, Disability
adjusted life-years, Incremental cost-effectiveness ratio

Background
Sub-Saharan Africa suffers the vast majority of the
world’s malaria burden, with an estimated 92% of inci-
dences occurring annually [1]. Due to this dispropor-
tionate malaria burden, great effort is underway to
develop and scale-up malaria interventions, with the ul-
timate goal to reduce the entire world’s malaria burden

to zero. To date, the primary strategy of most malaria
interventions focuses on some form of transmission
blocking, whether it be with fungal insecticides [2], in-
creased access to high quality antimalarial drugs [3], the
distribution of bed nets [4], or minimizing recurrent
malaria incidence in at-risk demographics [5–7]. While
these malaria interventions all stand to improve public
health, a common theme among them is that they do
not outright target one of the highest contributors to the

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: sgreenhalgh@siena.edu
1Department of Mathematics, Siena College, 515 Loudon Road, Loudonville,
NY 12211, USA
Full list of author information is available at the end of the article

Greenhalgh and Chandwani BMC Public Health           (2020) 20:17 
https://doi.org/10.1186/s12889-019-8141-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-019-8141-y&domain=pdf
http://orcid.org/0000-0003-2484-4147
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:sgreenhalgh@siena.edu


burden of malaria, namely, individuals that suffer some
form of severe malaria.
Severe malaria is one of two main classifications for

malaria disease [8], with the other typically being re-
ferred to as uncomplicated malaria. Severe malaria oc-
curs when serious complications arise during infection,
such as cerebral malaria, acute respiratory distress syn-
drome, low blood pressure, acute kidney injury,
hypoglycemia, and severe anemia, to name but a few [1].
While there are many factors that correlate with the risk
of severe malaria, including parasite virulence level and
host inflammation, a leading indicator for a severe mal-
aria incidence is parasite burden [9]. In fact, while a high
parasite burden is not synonymous with severe malaria
incidence, a low parasite burden yields little to no risk
for severe malaria [9].
Recently a study found that parasite burden is dramat-

ically reduced by gut microbiota [10]. Specifically, the
gut microbiota, Lactobacillus and Bifidobacterium, are
associated with up to a 14-fold decrease in parasite bur-
den [10], and substantially reduce the likelihood of se-
vere malaria. Given this result, we seek to determine the
conditions required for an intervention that targets se-
vere malaria to be cost-effective. To do this, we first
quantify the health benefits and costs required for an
intervention that targets severe malaria to be cost-
effective, and then determine whether the distribution of
gut-microbiota, through a freeze-dried yogurt, has the
potential to be a cost-effective malaria intervention.
To accomplish these goals we developed a mathemat-

ical model of malaria transmission calibrated to the mal-
aria transmission intensities, as characterized by the
entomological inoculation rate (EIR), of 41 countries in
sub-Saharan Africa. Using this model, we evaluate the
health benefits and cost-effectiveness of interventions
that reduce severe malaria, as measured by disability-
adjusted life years (DALYs) averted [11] and the incre-
mental cost-effectiveness ratio (ICER) [12]. We consider
intervention scenarios that reflect the average predicted
reduction caused by gut microbiota (a 14-fold reduction)
[10], the lower bound on the predicted reduction caused
by gut microbiota (7-fold reduction) [10], and illustrate
that even a 2-fold reduction in severe malaria still holds
merit.

Methods
To estimate the reduction in severe malaria inci-
dence required for an intervention to be cost effect-
ive, or very cost effective, we developed a
mathematical model of malaria transmission cali-
brated to the malaria transmission intensities and
population demographics of 41 sub-Saharan Africa
countries. As the complete prevention of severe mal-
aria incidence is unlikely, at least until the time that

malaria eradication is feasible, we base the modula-
tion of malaria severity on recent data of the effects
of gut microbiota on parasite burden in mice [10].
In addition, we only consider the effect of the inter-
vention scenarios on malaria incidence reported to
healthcare settings and classified as a severe malaria
incidence in accordance to WHO standards [1].
Based on these data, we consider interventions that
cause 2-, 7-, and 14-fold reductions in severe malaria
incidence over the course of a 5-year time horizon.
We consider the absence of any reduction in severe
malaria incidence as the baseline scenario for our
analysis. From these intervention scenarios, the out-
comes measured include annual severe malaria inci-
dence averted, the years of life lost due to malaria
and years lived with disability because of malaria, as
measured through DALYs averted [11], and the cost-
effectiveness of the intervention, as measure by ICER
[12]. To classify an intervention as cost-effective or
very cost-effective, we apply the WHO-CHOICE cri-
terion for cost-effective and very cost-effective inter-
ventions in relation to the GDP per capita for each
country [13].

The mathematical model
The developed mathematical model of malaria trans-
mission considers an approach [14] that divides the
population into six parts: susceptible individuals (S),
infected individuals with clinical disease (D), asymp-
tomatically infected individuals (A), individuals with
present, but not detectable, subpatent infection (U),
treated individuals (T), individuals using prophylaxis
(P) [14–16], susceptible mosquitoes (Ms), and infected
mosquitoes (Mi). The rate susceptible individuals ac-
quire malaria, λ, and the rate susceptible mosquitoes
acquire infection, λM, are given by the forces of infec-
tion [17, 18]:

λ ¼ cα
Mi

N
; and λM ¼ cβ

I
N
: ð1Þ

Here c is the mosquito biting rate, α is the mosquito-
to-human transmission probability, β is the human-to-
mosquito transmission probability, 1 ∕ d0 is the mean
mosquito lifespan, I is the total number of humans in-
fected with malaria, and N is the human population size.
The mathematical model also considers the probabilities
of symptomatic infection, ϕ, and effective treatment of
clinical malaria, fT, in addition to the rates of recovery
from clinical malaria, rT, asymptomatic malaria, rA, se-
vere malaria, rD, the period of protection provided by
prophylaxis, 1 ∕ rP, and the clearance rate of sub-patent
infection, rU [14–16].
We parameterize our mathematical model accord-

ing to one of the main measures of malaria
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transmission intensities, the EIR. The EIR is the
number of infectious bites of malaria per person per
year (ibpppy). We consider EIR values for 41 coun-
tries in sub-Saharan African (Additional file 1: Table
S1), which range from 0.05 to 220 ibpppy [19].
These EIR estimates, with the assumption that the
mosquito population is at equilibrium, and the trans-
mission probabilities between humans and mosqui-
toes (Table 1) allows us to estimate the mosquito to
human ratio for each considered country. In
addition, to estimate the proportion of malaria inci-
dence that is severe, we use published data on mal-
aria incidence and severe malaria incidence reported
to health care providers [31] (Additional file 1: Table
S1). We use these country specific estimates of the
proportion of malaria incidence that is severe (Add-
itional file 1: Table S1), together with the predicted
trajectory of malaria incidence under each countries’
EIR to evaluate the considered intervention scenar-
ios. Further details of the model parameters and
model equations are available in Table 1 and Add-
itional file 1.

The intervention
We considered an intervention that targets reducing
severe malaria incidence over a 5-year period in
order to illustrate the merit of such interventions for
clinical studies. The intervention is based upon
modulating the severity of malaria, as recent studies
illustrate the potential to accomplish such a feat
through the promotion of a microbiome that
includes the microbiota, Lactobacillus and Bifidobac-
terium [10]. Specifically, the microbiota, Lactobacillus
and Bifidobacterium, are associated with a 14-fold re-
duction in parasite burden [38]. So, we evaluate up
to a 14-fold reduction in severe malaria incidence to
determine the per person costs so that such an inter-
vention is cost-effective or very cost-effective.
To conduct such an evaluation, we parameterized

our model with freely available demographic data of
the considered 41 countries in sub-Saharan Africa
[39], and published data on the malaria transmission
intensity, as described by the EIR [19], for each re-
spective country.

Intervention costs
The treatment of uncomplicated malaria is assumed to
correspond to the WHO recommended guidelines for
first-line treatment of uncomplicated Plasmodium falcip-
arum malaria [40]. The treatment of uncomplicated mal-
aria typically corresponds to the use of an artemisinin-
based combination therapy, such as artemether-
lumefantrine, over the course of a 3 day treatment period
[40], with a median cost of $5.84 USD [34]. Similarly, we

also assume that the treatment of severe malaria corre-
sponds to WHO recommended guidelines [40] with esti-
mated median costs to treat an incidence of severe
malaria of $30.26 USD [34].
For an intervention based on the ability of gut

microbiota to modulate malaria severity [10], we also
consider the costs associated to the distribution of
gut microbiota through a freeze-dried yogurt [41].
Specifically, we consider intervention costs based on
yogurt prices of $0.20–0.29 USD for a 4–6 oz serving
[35], along with estimates that 2.27 servings of yogurt
are consumed per week [37]. In addition, we assume
that the distribution costs associated to the distribu-
tion of the freeze-dried yogurt are in line with the
$0.06–0.09 per unit cost for the distribution of anti-
malarial drugs [36].

Intervention effectiveness
We quantified the effectiveness of the intervention
that targets reducing severe malaria incidence in
terms of Disability Adjusted Life Years (DALYs),
which is a common measure of the health burden
resulting from years of life lost and years lived with
disability [42–44]. We calculated time-discounted
DALYs lost to malaria, severe malaria, cerebral mal-
aria, neurological sequelae, and severe malaria anemia
(Table 1). Annual DALYs averted were calculated by
subtracting each intervention scenario from the base
scenario for each respective country.

Intervention cost-effectiveness
We calculated the per person costs so that the pro-
posed intervention would qualify as cost-effective or
very cost-effective under the malaria transmission
settings occurring in the 41 considered countries in
sub-Saharan Africa. For each of these countries, we
obtained GDP per capital estimates [45] to determine
the willingness-to-pay for a i) cost-effective interven-
tion, and ii) a very cost-effective intervention. To do
so, we made use of the incremental cost-effectiveness
ratio (ICER),

ICER ¼ ΔC
ΔD

ð2Þ

where ΔD is the annual DALYs averted per person, rela-
tive to the baseline intervention, and ΔC = C1 − C0 is the
change in the average cost of a malaria incidence per
person. Here, C1 is the average cost of a malaria inci-
dence per person under the intervention, and C0 is the
average cost of a malaria incidence per person under the
base line scenarios, respectively. Furthermore, the aver-
age costs of a malaria incidence per person are deter-
mine by the reduction factor ψ, the average cost of an
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Table 1 Parameters values, distributions, and sources

Symbol Parameter Base value Distribution Citation

c Mosquito biting rate 1/3 day−1 Exp(3) [20]

α Transmission probability (mosquito to human) 0.25 N(0.25,0.04) [16]

β Transmission probability (human to mosquito) 0.433 Beta(12.5,16.35) [21]

m Mosquito to human ratio 1 − 3.8 Fit

rT Recovery rate for clinical malaria (with chemotherapy) 1/21 day−1 [16]

rD Recovery rate for severe malaria (without chemotherapy) 1∕ 180 day−1 [16]

rA Recovery rate from asymptomatic malaria 1∕ 180 day−1 [16]

1∕ rP Duration of post-treatment prophylaxis effect 28 days U[21, 35] [16]

rU Clearance rate of sub-patent infection 1∕ 180 day−1 [16]

1∕ d0 Mean mosquito life span 7.6 days logN(1.98,0.31) [14]

ϕ probability of symptomatic incidence 0.5 [16]

ft probability clinical malaria is effectively treated 0.5 0.05 to 1 [14, 16]

ω Proportion reporting for treatment to a healthcare setting 0.618 Beta(65.4,40.42) [22]

ψ Reduction in severe malaria incidence – 0, 1/2, 1/7, 1/14 [10]

r DALY discount rate 0.03 [23]

DM Disability weight of a malaria incidence 0.2078 [23]

DS Disability weight of a severe malaria incidence 0.133 [24]

DN Disability weight of neurological sequelae 0.471 [23]

DA Disability weight of severe malaria anemia 0.149 [24]

DC Disability weight of cerebral malaria 0.471 [25]

DCA Disability weight of cerebral malaria and severe malarial anemia 0.620 [25]

DNA Disability weight of neurological sequelae and severe malarial anemia 0.483 [23]

DD Disability weight of death 1.0 [23]

LM Duration of malaria incidence 5.1 days [26]

LS Duration of severe malaria incidence 8.75 days [27]

LN Duration of neurological sequelae 10.1 days [28]

LA Duration of severe malarial anemia 11 days [26]

LC Duration of cerebral malaria 6.5 days [27]

LCA Duration of cerebral malaria and severe malarial anemia 11 days [5]

LNA Duration of neurological sequelae and severe malarial anemia 11 days [5]

LD Years of life lost in death 55 years [29]

RM Risk of malaria infection 0.9943 [30]

RS Risk of severe malaria given malaria infection 0.0057 [30]

RN Risk of neurological sequelae given severe malaria 0.098 [28]

RA Risk of severe malarial anemia given severe malaria 0.322 U[0.043,1] [31]

RC Risk of cerebral malaria given severe malaria 0.002 [30]

RCA Risk of cerebral malaria and severe malarial anemia
given severe malaria infection

0.00096 [30]

RNA Risk of neurological sequelae and severe malarial
anemia given severe malaria infection

0.0316 [28, 31]

deathS Risk of death due to severe malaria Additional file 1:
Table S1

deathN Risk of death due to neurological sequelae 0.1835 [32]

deathA Risk of death due to severe malarial anemia 0.097 [32]

deathC Risk of death due to cerebral malaria 0.192 [30]
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uncomplicated malaria incidence υ, and the average cost
of a severe malaria incidence σ:

C0 ¼ υxþ σ 1−xð Þ; and C1

¼ υxþ σ 1−ψð Þ 1−xð Þ þ υψ 1−xð Þ þ g ð3Þ

where x is the proportion of incidence that are uncom-
plicated and g is the per person cost of the gut micro-
biota intervention.

In accordance with the WHO standards [46], a
cost-effective intervention for a country occurs
when ICER ≤ 3GDP, and a very cost-effective inter-
vention occurs when ICER ≤ GDP. Thus, from (3) it
follows that the per person cost of a cost-effective
intervention involving gut microbiota must satisfy

g < 3 � GDP ΔDþ ψ σ−υð Þ 1−xð Þ; ð4Þ

and the per person cost of a very cost-effective inter-
vention must satisfy

g < GDP ΔDþ ψ σ−υð Þ 1−xð Þ: ð5Þ

Sensitivity analysis
To quantify the contribution of parameters to the vari-
ability of predicted outcomes, we calculated first-order
sensitivity indices [47]. First-order sensitivity indices in-
dicate how uncertainty in each parameter contributes to
the variability of model outcomes. Details of the parame-
ters and probability distributions used in this calculation
are available in Table 1.

Results
We evaluated the health benefits of an intervention that
reduces severe malaria incidence, and identified the
thresholds for such an intervention to be cost-effective
or very cost-effective for 41 countries in sub-Saharan Af-
rica. Furthermore, we evaluate an intervention that tar-
gets severe malaria based on the costs and effects
associated to the distribution of gut microbiota through
a freeze-dried yogurt, finding that such an intervention

is likely cost-effective in at least 25 countries in sub-
Saharan Africa.
Our model predicted a total of 1.8 × 107 (3.3 × 103 −

7.3 × 108 ) malaria incidence over the course of a 5-year
period (Fig. 1a), which translates to 3.2 (0.001 − 8.4) total
incidence per person per year (Fig. 1b). These predic-
tions are within current estimates of the malaria inci-
dence for each respective country, given recent trends
on malaria transmission intensities [31]. Furthermore,
the predicted proportion of severe malaria incidence was
also in line with the literature [5, 6, 22], as simulations
place this proportion at 0.59 (0.49 − 0.68) (Fig. 1c). Given
these baseline values of malaria incidence, our model
predicted that 0.24–44.0, 0.01–40.91, and 0.00–23.87 an-
nual incidences of severe malaria per 1000 people would
be averted for 14-fold, 7-fold, and 2-fold reduction fac-
tors, respectively, depending on malaria transmission in-
tensity and population demographics (Table 2, Fig. 1d).
For the costs and effects associated to the distribution

of gut microbiota through a freeze-dried yogurt, we
found the median ICER ranged from 4.7 to 3.5 × 106

across all countries. When considering specific coun-
tries, our findings show that a gut microbiota interven-
tion would be cost-effective in 29 of 41 sub-Saharan
African countries (Fig. 2a). Furthermore, of these 29
countries, 16 have their entire interquartile range of pre-
dicted ICER values below the cost-effectiveness thresh-
old of 3 times the GDP per capita (Fig. 2a). Concerning
the potential for a very cost-effective intervention, 25
countries fall below the threshold of the GDP per cap-
ital, with 14 of the 25 countries having their interquartile
range for predictions of the ICER below the very cost-
effective threshold of the GDP per capita. In addition,
such reductions in severe malaria incidence would also
avert between 0.001–6.09 deaths per 1000 people and
0.001–37.19 annual DALYs per 1000 people (Table 2),
depending on the intervention reduction factor and the
EIR. Given these results, the upper cost threshold for
such an intervention to be cost-effective in at least one
country is $112 USD per person annually, and $49 USD
per person annually to be very cost-effective (Fig. 2b-c).
These numbers improve to 15–19 countries for cost-

Table 1 Parameters values, distributions, and sources (Continued)

Symbol Parameter Base value Distribution Citation

deathCA Risk of death due to cerebral malaria and severe malarial anemia 0.1835 [33]

deathNA Risk of death due to neurological sequelae and severe malarial anemia 0.347 [23]

υ Cost of a uncomplicated malaria incidence 5.84 Tri(2.36, 3.50, 23.65) [34]

σ Cost of a severe malaria incidence 30.26 Tri(15.64, 19.14, 137.87) [34]

δ Cost per serving of yogurt Tri(0.2,0.245,0.29) [35]

θ Distribution costs per serving 0.075 U(0.06,0.09) [36]

Y Servings of yogurt consumed per week 2.27 U(2.21,2.33) [37]
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effective interventions and 9–14 countries for very cost-
effective interventions (Fig. 2b-c) when costs are as-
sumed to be in line with the upper cost for an uncompli-
cated malaria incidence of $23.65 USD (Table 1) to the
average cost of severe malaria incidence of $30.26 USD
(Table 1).
With regard to model predictions, our sensitivity ana-

lysis showed that the largest contributor to the variation
in the ICER was uncertainty in the mosquito biting rate,
followed by the human to mosquito transmission prob-
ability (Fig. 2d). In addition, the sensitivity analysis also
showed that the effect of uncertainty in intervention
costs were in the same order of magnitude as most other
model parameters (Fig. 2d).

Discussion
To date, the vast majority of malaria interventions do
not outright target severe malaria. While the reduction
of severe malaria incidence may not directly cause mal-
aria eradication, severe malaria is responsible for sub-
stantial health and economic burdens. Our results

indicate that reducing severe malaria through interven-
tions, such as the distribution of the gut microbiota,
Lactobacillus and Bifidobacterium, by means of a freeze-
dried yogurt, may be a cost-effective strategy for areas
seeking malaria control.
Our predictions illustrate that an intervention that

causes a 2- to 14-fold reduction in severe malaria inci-
dence is potentially cost-effective in the majority of the
considered sub-Saharan African countries. Furthermore,
these predictions are likely conservative, as reducing se-
vere malaria incidence would decrease the average dur-
ation of malaria infection, and subsequently decrease
transmission intensity. Likewise, our model predictions
for a gut microbiota intervention are also likely conser-
vative. To elaborate, the distribution of gut microbiota
through a freeze-dried yogurt would also promote and
restore healthy gut microbiomes, which may help fend
off diarrheal disease, decrease cholesterol [48], and con-
vey multiple other long-term health benefits [49]. Fur-
thermore, freeze-dried yogurt can carry nutritional
value, and thereby may aid in reducing a large at-risk

Table 2 Severe malaria incidence, deaths, and DALYs averted

Scenario Annual severe malaria incidence
averted per 1000 ppl

Annual malaria deaths averted
per 1000 ppl

Annual DALYs saved
per 1000 ppl

2-fold reduction 9.2 (0.00–23.87) 0.7 (0.00–3.28) 3.6 (0.00–20.35)

7-fold reduction 15.7 (0.01–40.91) 1.1 (0.00–5.63) 6.2 (0.00–34.88)

14-fold reduction 17.0 (0.24–44.00) 1.2 (0.00–6.09) 6.7 (0.00–37.79)

Entries correspond to averages with the range of values for all 41 countries in parentheses

Fig. 1 Malaria incidence and DALYs over a period of five years. a Predicted malaria incidence for the 41 considered countries in sub-Saharan
Africa, b total malaria incidence for the 41 considered countries in sub-Saharan Africa, c the proportion of malaria incidence reported to a
healthcare provider, and d annual DALYs averted for given reduction factor. The mean for all countries (red line), and 95% quantiles
(shaded region)
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group for malaria infection, namely, malnourished chil-
dren [50, 51].
The predictions of annual malaria incidence by our

model are consistent with previously published data [14,
52, 53]. In addition, the predicted health benefits are com-
parable with current estimates of other interventions, such
as the DALYS averted by the use of HIV protease inhibi-
tors to prevent recurrent malaria incidence in HIV in-
fected children [5, 6] and prevention campaigns [54].
With respect to intervention costs, although higher costs
per person unsurprisingly reduced the number of coun-
tries where a severe malaria intervention is cost-effective,
our estimates of the ICER are comparable to various
scale-up programs [55], and the effects of media on pro-
moting life-saving practices [56].
Our study faces several potential limitations. To begin,

our model only considered stable transmission inten-
sities of 0.05 to 220 ibpppy, and did not include seasonal

increases that often occur in many sub-Saharan African
countries. In addition, our model does not account for
age structure or the various kinds of malaria immunity.
Furthermore, the maximum reduction in severe malaria
incidence (i.e., the 14-fold and 7-fold reductions) is
based on gut microbiota studies of mice, although we
also provide estimates that even a 2-fold decrease in se-
vere malaria provides substantial benefits. Finally, our
decision criteria of cost-effective and very cost-effective
interventions is based on the WHO-CHOICE recom-
mendations with respect to country specific GDP [57],
and therefore does not provide information on the af-
fordability or feasibility of such interventions [58].
In this study, we estimate the reduction in the health

burden of malaria caused by reducing severe malaria in-
cidence for stable malaria transmission in 41 sub-
Saharan African countries. As such, our model is easily
adaptable to describe other malaria transmission

Fig. 2 ICER, intervention cost and effectiveness, and sensitivity of cost-effectiveness to model parameters. a Boxplots of ICER values based on
sample sizes of 10,000 stochastic parameter samples with threshold lines for a cost-effective intervention (black dash dot line) and a very cost-
effective intervention (black dashed line), respectively. b Per person intervention costs for a cost-effective intervention and c Per person
intervention costs for a very cost-effective intervention. Colored regions correspond to a 14-fold reduction in severe malaria incidence (black), 7-
fold reduction in severe malaria incidence (blue), and 2-fold reduction in severe malaria incidence (red). d First order sensitivity indices for
average ICER. Calculations are based on sample sizes of 10,000, where the reduction factor of severe malaria incidence is ϕ~U[2, 14]
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settings. For instance, modifications to incorporate sea-
sonal transmission, and a more selective distribution
schedule for the gut microbiota, would only require the
inclusion of periodic parameters. The likely result of
such modifications would be an even more cost-effective
intervention. In the same vein, modifications to include
an age structure would also likely provide positive re-
sults, as the distribution of gut microbiota through
freeze-dried yogurt would be more effective through tar-
geting children, as they typically endure more severe and
more frequent malaria infections.

Conclusion
In summary, to inform the potential design of malaria
interventions that target severe malaria, we developed a
mathematical model to predict the health benefit and
cost-effectiveness of 2-, 7-, and 14-fold reductions in se-
vere malaria incidence. Our analyses indicates that the
health and economic savings of even a 2-fold reduction
in severe malaria incidence would be substantial. Conse-
quently, we suggest that interventions that target severe
malaria could be economically viable and beneficial to
health, and thus further empirical research on the possi-
bility of such interventions merits consideration.
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