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Abstract

Background: Many infectious diseases of public health importance display annual seasonal patterns in their
incidence. We aimed to systematically document the seasonality of several human infectious disease pathogens in
England and Wales, highlighting those organisms that appear weather-sensitive and therefore may be influenced
by climate change in the future.

Methods: Data on infections in England and Wales from 1989 to 2014 were extracted from the Public Health
England (PHE) SGSS surveillance database. We conducted a weekly, monthly and quarterly time series analysis of
277 pathogen serotypes. Each organism’s time series was forecasted using the TBATS package in R, with seasonality
detected using model fit statistics. Meteorological data hosted on the MEDMI Platform were extracted at a monthly
resolution for 2001–2011. The organisms were then clustered by K-means into two groups based on cross
correlation coefficients with the weather variables.

Results: Examination of 12.9 million infection episodes found seasonal components in 91/277 (33%) organism
serotypes. Salmonella showed seasonal and non-seasonal serotypes. These results were visualised in an online
Rshiny application. Seasonal organisms were then clustered into two groups based on their correlations with
weather. Group 1 had positive correlations with temperature (max, mean and min), sunshine and vapour pressure
and inverse correlations with mean wind speed, relative humidity, ground frost and air frost. Group 2 had the
opposite but also slight positive correlations with rainfall (mm, > 1 mm, > 10 mm).

Conclusions: The detection of seasonality in pathogen time series data and the identification of relevant weather
predictors can improve forecasting and public health planning. Big data analytics and online visualisation allow the
relationship between pathogen incidence and weather patterns to be clarified.
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Background
Seasonality can be defined as increased or decreased
observations that display a periodic pattern (e.g. week,
month, quarter) of occurrence between years [1]. Micro-
bial pathogens tend to be defined as microorganisms
that can cause disease in humans and other organisms
[2]. Reviews of their seasonality have been published
previously [3]. Seasonal drivers are already known to

produce annual peaks for a number of infectious dis-
eases, including malaria [4], West Nile virus [5], and
cholera [6], as well as several pathogens transmissible by
contact such as influenza [7], respiratory syncytial virus
[8] and Meningococcal meningitis [9].
Seasonality may be explained by a mixture of factors

including climate, social, behavioural, agricultural, envir-
onmental, stochastic changes in immune populations, and
other drivers. In addition, weather can influence vector
abundance, pathogen survival and host characteristics (e.g.
behaviour and immune susceptibility) [3]. The mathemat-
ical approaches to modelling have been reviewed [10].
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Several studies have investigated the effects of weather
and climate on pathogens in England and Wales. Sal-
monella Enteritidis incidence was shown to increase by
12.5% (95%CI; 11.6–13.4) for every 1 °C rise over a 6 °C
threshold [11]. Similarly, Campylobacter prevalence was
associated with temperature in the previous 2 weeks [12]
while other studies found little association [13].
A systematic approach to the analysis of the potential

seasonality of common pathogen serotypes and their
associations with multiple weather variables is required
to help narrow the focus on candidate pathogens in
addition to those that have been studied in depth previ-
ously. The current analysis is well placed to address this
gap given the rich data now available on a broad number
of pathogens and meteorological factors. The aim of the
analysis was to use several data mining techniques to
identify pathogens that display a seasonal component,
and describe their associations with meteorological
factors as an aid to future analytical work (including
forecasting) and public health planning.

Methods
Infectious disease data
Infectious disease data from England and Wales were
collected by Public Health England (PHE) (formerly the
Health Protection Agency and before that the Public
Health Laboratory Service) through a voluntary report-
ing system, whereby hospital laboratory records are
transferred to regional epidemiology units, processed
and added to the LabBase2 national surveillance data-
base [14]. To avoid duplication by organism and patient,
each record has a unique identifier called the Organism
Patient Illness Record (OPIE). If a record is sent with
the same patient and organism information within
14 days (26 weeks for Mycobacterium spp.), then these
cases are merged to ensure a single OPIE for the entire
duration of the episode. The Second Generation Surveil-
lance System (SGSS- formerly LabBase2) voluntary na-
tional surveillance database holds records on 12,904,446
reportable human infectious cases spanning from the 1st
week in 1988 to the 2nd week in 2015 for 344 root or-
ganisms and 2014 serotypes. Pathogen counts were re-
corded at a weekly level in the database. The analysis for
individual serotypes was restricted to complete years,
from 1989 to 2014, with serotypes greater than 854 cases
(above quartile one, i.e. top 25% in terms of total count),
as a time series model could not be automatically esti-
mated with fewer cases (n = 277). We aggregated the
data to a monthly level and linked with national
meteorological data held on the Medical and
Environmental Data Mash-up Infrastructure project
(MEDMI) platform [15]. The analysis was performed at
a national scale due to multiple factors at a local level

that act as noise to obfuscate the relationship between
infectious disease and weather [16].

Meteorological data
A range of meteorological data for the UK was downloaded
from the MEDMI Platform [15] at a 5 km by 5 km reso-
lution for 2001–2011; full details on methods used to gen-
erate data are provided elsewhere [17]. The variables were
monthly weather summaries that included: mean sunshine
duration (hours per day), mean temperature (°C), mean
daily maximum temperature (°C), mean daily minimum
temperature (°C), mean vapour pressure (hPa), mean sea
level (MSL) pressure (hPa), rain ≥1 mm (days), rain
≥10 mm (days), total rainfall (mm), mean wind speed at a
height of 10 m (knots), mean relative humidity (%), snow
lying over 50% of ground (days), ground frost measured as
grass minimum temperature below 0 °C (days), and air frost
measured as air minimum temperature below 0 °C (days)
(Additional file 1: Figure S1). The data were imported into
ArcMap 10 (ESRI, Redwoods, CA) and aggregated (arith-
metic mean) for England and Wales, which enabled linkage
with the infectious disease time series data.

Statistical analyses
Descriptive statistics were generated for the organisms
including total count, crude prevalence rate per month,
peak month and plots of time-series patterns (for
gastro-intestinally acquired infections and those from
respiratory transmission). We applied a two stage auto-
mated analysis to: a) detect seasonality and b) identify
correlations with weather variables. The first stage was
the seasonality detection analysis, undertaken in Rstudio
(ver 0.98.507). Description of the forecast package,
which was used extensively in the analysis to automatic-
ally detect seasonal patterns, has been detailed elsewhere
[18]. Briefly, the pathogen time series data were decom-
posed via Box Cox Transformations into trend, seasonal
and irregular components, which were used to forecast
the time series into the future [18]. The algorithm auto-
matically selects model parameters such as trend (with
or without a dampening parameter) and noise (ARMA
(p,q) process) using model fit statistics (i.e. minimising
Akaike Information Criteria (AIC)). A TBATS model, as
described above, was fitted for each organism serotype
(with a non-zero count) using the weekly periodicity (i.e.
the most granular temporal resolution available). The
models were re-run with data aggregated at monthly and
quarterly periodicities to investigate seasonality at differ-
ent temporal aggregations [19]. Each time the model
would provide a logical output (i.e. true/false) as to
whether the model fit improved with the inclusion of
the seasonal component (i.e. consistent repeating pattern
over time). This is because the algorithm fits two
models, seasonal and non-seasonal, and selects the
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seasonal model if the AIC is lower than the
non-seasonal model (heuristically, it selects the model
that results in the best combination of good fit and
lower number of parameters). To limit the seasonality
definition to those whose model fit was significantly bet-
ter with the addition of the seasonal component, we cal-
culated the difference between the seasonal and
non-seasonal AIC (Δi =AICnonseasonal −AICseasonal) and
excluded organisms with AIC difference greater than 10,
as suggested as a suitable cut-off by Burnham and An-
derson [20]. The pathogens at a monthly resolution with
AIC difference greater than 10 were used in subsequent
analysis with weather variables.
For the second stage, we aggregated the pathogen inci-

dence data to monthly resolution so that they were able to
be merged with the weather variables previously processed
to monthly values by the National Climate Information
Centre. The time series’ for each of the weather variables
was shown to be stationary (no significant trend from year
to year) by using the Augmented Dickey–Fuller (AF) test
(p < 0.05) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
test (p > 0.05). We tested each pathogen time series in the
same way. Some were found to be non-stationary and dif-
ferenced (once or twice, depending on results of AF and
KPSS tests). Cross correlation coefficients were generated
between cases and weather variables for the month that
they were recorded and then by the meteorological values
lagged by 1 month. The correlation coefficients were then
used as input to the K-means clustering method. Two
clusters were generated in order to narrow the focus on
those correlated with weather. The terminology for dis-
cussing the correlation coefficients was as follows: very
weak (r = 0–0.19), weak (r = 0.20–0.39), moderate
(r = 0.40–0.59), strong (0.60–0.79) and very strong
(r = 0.80–1.00). Seasonality and weather correlation results
were summarised and discussed in terms of differences
between weather variables and within the most common
genus for which serotypes were available (Salmonella).

Data visualisation
Supplementary to the time series analysis, an Rshiny app
was developed to display the results and aid future hy-
pothesis generation. The user can filter the pathogens by
seasonality, prevalence and serotype. Once an individual
serotype is selected, a range of descriptive information is
available: Wikipedia description, total number of cases,
time series plot, month plot of crude rate per 100,000
(England and Wales population), decomposition of time
series, TBATS model forecast and weather scatterplot.

Results
Descriptive results- pathogens
The weekly data on 12.9 million pathogen infections in
England and Wales from 1989 to 2014 were examined

systematically. The minimum number for an organism
to be in the database during the time period was once
per week. The maximum number of cases for 1 week
was 4073 for Chlamydia trachomatis. There was a
non-normal distribution of total cases, from one case for
345 organisms to 2,094,656 for Chlamydia trachomatis.
The median number of total cases was 3156 (Interquartile
range quartile 1- quartile 3; 854–15,730). The organisms
with the highest number of serotypes were Salmonella
(n = 890) and Streptococcus (n = 60), although most of
these had very low counts.
Figure 1 shows a heat map of z-scores of crude rates

by month (Fig. 1 shows non-salmonella pathogens, and
Fig. 1 shows only the Salmonella genus). The months
with the fewest high pathogen rates for the majority of
organisms were December (36.1%) and February (31.4%).
The months with the highest number of high pathogen
rates were more evenly spread out over the summer and
autumn, with July, August, September and October
being the highest months for 62.2% of the organisms.
The seasonality of gastro-intestinally acquired infections
(Fig. 2), and pathogens acquired through respiratory
transmission (Fig. 3), differed substantially. The
gastro-intestinal pathogens showed different distribu-
tions, with most bacteria having higher rates in summer,
some viruses had higher rates in winter (e.g. norovirus,
rotavirus) and others were more common in the sum-
mer (enteroviruses). Some of the pathogens associated
with travel overseas had a late summer increase
(thought to reflect the period when people return from
summer holidays). The respiratory pathogens predomi-
nated in the winter months (e.g. coronavirus, influenza,
Respiratory Syncytial Virus (RSV)). However, several of
the bacterial pathogens were more frequent in warmer
months (e.g. Bordetella, Coxiella, Legionella).

Seasonality detection and association with weather
variables
We detected significant seasonality in 91 organisms
using TBATS models at varying periodicities (91/277;
33%) (Additional file 2: Table S1); with varying links with
weather (Additional file 3: Figure S2). Two k-means
clusters (identified as the optimum number of k) were
generated from the cross correlation coefficients with
weather variables and represented groups of pathogens
that had similar correlations with weather variables
(Fig. 4). The two groups were characterised by their rela-
tionship with the weather variables (Additional file 4:
Table S2). Group 1 had mean positive correlations with
higher temperature (min, mean, max), sunshine and
vapour pressure; whilst the Group 2 had positive mean
correlations with lower temperature variables (snow
lying, ground frost, air frost), precipitation (rain days
over 1 mm, rain days over 10 mm and rainfall), mean

Cherrie et al. BMC Public Health  (2018) 18:1067 Page 3 of 13



Fig. 1 a: Distribution of z-score salmonella pathogen crude rates by month. b: Distribution of z-score non-salmonella pathogen crude rates
by month
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wind speed and relative humidity. Within Group 1
there were pathogens with the strongest correlations
with sunshine (n = 25) and vapour pressure (n = 11).
In Group 2, pathogens had highest correlations with
relative humidity (n = 8) and Ground frost (n = 5)
(Additional file 5: Figure S3). There was at least one
pathogen with the highest correlation for each meteoro-
logical variable. Summary information on seasonality and
links with weather, by temperature cluster group are pre-
sented in Table 1.

Pathogen weather groups
Group 1 consisted of 66 organisms, of which 22 were
from the Salmonella genus. Parvovirus B19 had a mod-
erate correlation with sunshine (mean r = 0.54), followed
by Salmonella Enteritidis with sunshine (r = 0.52) and

Salmonella Typhimurium with vapour pressure (r = 0.46).
Group 2 consisted of 25 pathogens of which only two
genus (Influenza and trychophyton) had more than
one serotype. RSV had strong correlations with air
frost (r = 0.69), followed by moderate correlations between
Human metapneumovirus (HMPV) with relative humidity
(r = 0.55) and Rubella virus with lying snow (r = 0.53).

Differences between weather variables
We were interested in how the correlation coefficients
varied between the weather variables that measured the
same phenomenon (e.g. min, max, mean temperature).
In general, there were slight differences between the
different measures of temperature. The mean difference
in correlation coefficients between minimum and max-
imum temperature was 0.002 with standard deviation

Fig. 2 Seasonal distribution of gastro-intestinally transmitted pathogens
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of 0.02. HMPV and Rotavirus showed the largest differ-
ence between the temperature variables (comparing min
temp and max temp). HMPV recorded a 0.14 higher coef-
ficient for maximum temperature, whereas Rotavirus
recorded a 0.16 higher coefficient for minimum

temperature. Similar associations with temperature were
found with vapour pressure and sunshine, although they
tended to be relatively weaker when taking the mean for
all of the pathogens There were also similar moderate in-
verse correlations with ground frost, air frost and snow

Fig. 3 Seasonal distribution of respiratory tract transmitted pathogens

Fig. 4 K-means clusters of pathogens by correlation with meteorological variables
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Table 1 Summary table of seasonal pathogens with potential links with weather

Genus Serotype Weather variable
max correlation
name (lag 1 month)

Weather variable
max correlation
(lag 1 month)

Weather
Group

Weather variable
min correlation
name (lag 1 month)

Weather variable
min correlation
(lag 1 month)

ACINETOBACTER BAUMANNII Sunshine 0.23 1 Relative.humidity −0.01

ACINETOBACTER SP Min.temp 0.2 1 Ground.frost −0.09

ACINETOBACTER LWOFFII Mean.temp 0.13 1 Ground.frost −0.06

ADENOVIRUS Raindays.10 0.15 2 Sunshine −0.06

AEROMONAS HYDROPHILA Sunshine 0.32 1 Relative.humidity −0.15

AEROMONAS SP Sunshine 0.28 1 Relative.humidity −0.03

AEROMONAS SOBRIA Max.temp 0.18 1 Rainfall −0.09

ASPERGILLUS FLAVUS Min.temp 0.13 1 Air.frost −0.01

ASTROVIRUS Relative.humidity 0.2 2 Sunshine −0.01

BACILLUS CEREUS Sunshine 0.25 1 Relative.humidity −0.08

BACILLUS SP Sunshine 0.17 1 Relative.humidity −0.05

BLASTOCYSTIS HOMINIS Mean.temp 0.19 1 Ground.frost 0

BORDETELLA PERTUSSIS Sunshine 0.23 1 Relative.humidity − 0.02

BORRELIA BURGDORFERI Sunshine 0.4 1 Relative.humidity −0.04

CAMPYLOBACTER SP Sunshine 0.37 1 Relative.humidity − 0.08

CAMPYLOBACTER JEJUNI Sunshine 0.21 1 Relative.humidity −0.02

CANDIDA PARAPSILOSIS Raindays.10 0.15 1 Snow.lying −0.09

CHLAMYDIA SP Raindays.1 0.11 1 Air.frost 0

CITROBACTER SP Vapour.pressure 0.23 1 Mean.wind.speed −0.02

CITROBACTER FREUNDII Mean.temp 0.2 1 Air.frost −0.01

COXSACKIE B Rainfall 0.12 1 MLSPressure −0.06

CRYPTOSPORIDIUM SP Relative.humidity 0.29 2 Sunshine 0

CYCLOSPORA SP Sunshine 0.14 2 Relative.humidity −0.02

ECHOVIRUS Sunshine 0.12 1 Relative.humidity 0

ENTAMOEBA HISTOLYTICA Ground.frost 0.06 2 Mean.wind.speed −0.02

ENTEROBACTER CLOACAE Min.temp 0.26 1 Air.frost −0.06

ENTEROBACTER OTHER NAMED Max.temp 0.18 2 Snow.lying 0

ENTEROBACTER SP Min.temp 0.15 1 Ground.frost −0.05

ENTEROBACTER AGGLOMERANS (PANTOEA
AGGLOMERANS)

Snow.lying 0.09 1 Relative.humidity 0

ENTEROBIUS VERMICULARIS Vapour.pressure 0.14 1 Ground.frost −0.03

ENTEROVIRUS UNTYPED Sunshine 0.1 1 Snow.lying −0.04

GIARDIA LAMBLIA Relative.humidity 0.37 2 Sunshine −0.02

HAEMOPHILUS INFLUENZAE Relative.humidity 0.23 2 Sunshine −0.01

HEPATITIS A Min.temp 0.2 1 Air.frost −0.11

HEPATITIS E Mean.wind.speed 0.17 2 Vapour.pressure −0.02

HERPES SIMPLEX VIRUS Mean.wind.speed 0.11 1 Snow.lying −0.01

HUMAN
METAPNEUMOVIRUS
(HMPV)

Relative.humidity 0.55 2 Sunshine −0.09

INFLUENZA A Snow.lying 0.32 2 Raindays.1 −0.02

INFLUENZA B Ground.frost 0.21 2 Max.temp 0

LISTERIA MONOCYTOGENES Vapour.pressure 0.36 1 Ground.frost −0.02

MORAXELLA CATARRHALIS Relative.humidity 0.26 2 Sunshine −0.12
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Table 1 Summary table of seasonal pathogens with potential links with weather (Continued)

Genus Serotype Weather variable
max correlation
name (lag 1 month)

Weather variable
max correlation
(lag 1 month)

Weather
Group

Weather variable
min correlation
name (lag 1 month)

Weather variable
min correlation
(lag 1 month)

MYCOBACTERIUM TUBERCULOSIS Mean.wind.speed 0.14 2 Vapour.pressure −0.01

MYCOPLASMA PNEUMONIAE Ground.frost 0.43 2 Mean.temp −0.35

NEISSERIA MENINGITIDIS Relative.humidity 0.33 2 Sunshine −0.01

PANTOEA SP Sunshine 0.12 1 MLSPressure −0.03

PARAINFLUENZA Ground.frost 0.23 2 Vapour.pressure −0.01

PARVOVIRUS B19 Sunshine 0.54 1 Relative.humidity −0.11

PASTEURELLA MULTOCIDA Sunshine 0.09 1 Air.frost 0

PLASMODIUM FALCIPARUM Max.temp 0.16 1 Ground.frost −0.01

PLESIOMONAS SHIGELLOIDES Vapour.pressure 0.31 1 Snow.lying −0.01

PLESIOMONAS AERUGINOSA Min.temp 0.2 1 Ground.frost −0.04

PROTEUS VULGARIS Vapour.pressure 0.14 1 Snow.lying 0

PSEUDOMONAS PUTIDA Max.temp 0.15 1 Mean.wind.speed 0

PSEUDOMONAS OTHER NAMED Sunshine 0.2 1 Air.frost 0

RESPIRATORY SYNCYTIAL
VIRUS (RSV)

Air.frost 0.69 2 Max.temp −0.6

RHINOVIRUS Raindays.10 0.17 1 Snow.lying −0.07

ROTAVIRUS Sunshine 0.4 1 Relative.humidity −0.03

RUBELLA VIRUS Snow.lying 0.53 2 Mean.wind.speed −0.03

SALMONELLA ENTERITIDIS Sunshine 0.52 1 Relative.humidity −0.03

SALMONELLA TYPHIMURIUM Vapour.pressure 0.46 1 Relative.humidity −0.02

SALMONELLA KENTUCKY Max.temp 0.37 1 Relative.humidity −0.09

SALMONELLA DERBY Vapour.pressure 0.36 1 Relative.humidity −0.12

SALMONELLA AGONA Vapour.pressure 0.35 1 Relative.humidity −0.1

SALMONELLA PARATYPHI A Mean.temp 0.33 1 Relative.humidity 0

SALMONELLA STANLEY Mean.temp 0.32 1 Relative.humidity −0.04

SALMONELLA VIRCHOW Sunshine 0.29 1 Relative.humidity −0.01

SALMONELLA THOMPSON Raindays.10 0.28 1 Ground.frost −0.01

SALMONELLA INFANTIS Relative.humidity 0.25 1 Ground.frost −0.1

SALMONELLA BLOCKLEY Sunshine 0.24 1 Air.frost −0.03

SALMONELLA MONTEVIDEO Sunshine 0.23 1 Air.frost −0.02

SALMONELLA HADAR Sunshine 0.22 1 Mean.wind.speed −0.06

SALMONELLA NEWPORT Raindays.10 0.21 2 Relative.humidity −0.06

SALMONELLA MBANDAKA Vapour.pressure 0.2 1 Ground.frost −0.06

SALMONELLA BRANDENBURG Vapour.pressure 0.17 1 Ground.frost −0.09

SALMONELLA HEIDELBERG Sunshine 0.15 1 Ground.frost −0.03

SALMONELLA ORANIENBURG Mean.wind.speed 0.14 1 MLSPressure −0.03

SALMONELLA JAVA Raindays.10 0.14 1 Ground.frost −0.02

SALMONELLA UNNAMED Sunshine 0.13 1 Ground.frost −0.14

SALMONELLA BRAENDERUP Vapour.pressure 0.13 1 Mean.wind.speed −0.01

SALMONELLA TYPHI Mean.wind.speed 0.1 1 Ground.frost −0.11

SALMONELLA SAINT-PAUL Sunshine 0.08 1 Air.frost −0.01

SERRATIA MARCESCENS Min.temp 0.19 1 Snow.lying −0.04

SERRATIA SP Min.temp 0.17 1 Air.frost −0.06
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lying days. For Influenza A, days with lying snow had
a higher correlation than the other weather variables
(r = 0.32). Notable differences in correlations between
pathogens and the precipitation variables (comparing
days with over 10 mm of rain compared to days with
over 1 mm of rain), included Plesiomonas shigelloides
with a 0.19 higher correlation with days over 10 mm
and RSV with a 0.15 higher correlation with days
over 1 mm of rain.

Differences within the Salmonella genus
Salmonella serotypes featured heavily with varying
strength and pattern of seasonality detected. Salmonella
Enteritidis and Salmonella Typhimurium had the stron-
gest associations with meteorological variables. The
remaining Salmonella serotypes were split between being
weakly correlated (n = 15) and very weakly correlated (n
= 8). There is some reason to believe that the epidemio-
logical causes of seasonality in most Salmonellas is similar
(24/25; 96% belong to Group 1) and the association with
temperature might be linked to growth in prepared foods.
In addition, the strength of association in linking the sea-
sonality or temperature to cases will be limited to the
number of isolates in each serogroup. Because of this the
salmonellas were grouped into four groups (1. Salmonellas
causing enteric fever that are usually acquired overseas (S.
Typhi/S. Paratyphi); 2. Seasonal salmonellas; 3. Strains
showing no evidence of any seasonality and 4. The
remaining strains where there are insufficient numbers
to determine seasonality). The remaining strains in-
cluded serotypes that had so few isolates that seasonal-
ity could not be determined. When grouped thus, the
seasonality of the seasonal salmonellas (2) resembled
that of the remaining strains (4), while the overall
seasonality of serotypes that individually showed little
evidence of seasonality were not obviously seasonal
when combined (Fig. 5). The seasonality of groups 2
and 4 showed a high degree of correlation using data
averaged over the 25-year period (r2 = 0.98; Fig. 5b).

Discussion
Principal findings
We have systematically examined a large number of
human infectious disease pathogens for seasonality, and
detailed potential links with weather in England and
Wales. This was made possible by utilising time series
and clustering algorithms that can detect patterns in the
data without supervision. This can lead to greater research
efficiency by defining a focus for further investigations.
We found that 91 of the most prevalent organisms
displayed seasonality, classified into two groups due to
their association with 1 month lagged meteorological
variables. Within these groups, there were well-known
seasonal pathogens such as RSV, Campylobacter and
Salmonella, as well as other less studied organisms such
as Aeromonas.

Strengths and limitations
The limitations of the big-data approach in this analysis
meant that it was not possible to undertake analysis on
causative weather factors on pathogen incidence.
Behavioural determinants that correlate with season
and weather may explain the correlations found. For
example, school closures for holidays can reduce trans-
mission and therefore cases of influenza [21], outdoor
eating, when the temperature is higher increases risk of
Salmonella, undercooking, raw meat contamination
and recreational activities on water, are more likely to
occur in summer, are associated with Campylobacter
[22]. In separate work we are looking at methods to
separate out the weather parameters from seasonality
(and the associated behavioural determinants) using
local weather data linkage, as described in ‘recommen-
dations for future research’ [23]. The study was limited
by the temporal and spatial aggregation of the data, and
therefore we were unable to investigate the effect of
day-to-day weather in regions of England and Wales.
The results of the analysis were also dependent on the
time-period used. For example, C. difficile have been

Table 1 Summary table of seasonal pathogens with potential links with weather (Continued)

Genus Serotype Weather variable
max correlation
name (lag 1 month)

Weather variable
max correlation
(lag 1 month)

Weather
Group

Weather variable
min correlation
name (lag 1 month)

Weather variable
min correlation
(lag 1 month)

SHIGELLA SONNEI Sunshine 0.26 1 Snow.lying −0.07

SHIGELLA FLEXNERI Raindays.1 0.21 2 Relative.humidity −0.05

STENOTROPHOMONAS MALTOPHILIA Min.temp 0.3 1 Air.frost 0

STREPTOCOCCUS PNEUMONIAE Relative.humidity 0.28 2 Sunshine −0.15

TRICHOPHYTON SP MLSPressure 0.17 1 Max.temp −0.01

TRICHOPHYTON OTHER NAMED Mean.wind.speed 0.17 2 Relative.humidity −0.03

TRICHOPHYTON TONSURANS Ground.frost 0.11 2 Max.temp 0

VARICELLA ZOSTER Mean.wind.speed 0.13 2 Vapour.pressure −0.03
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reported to have a strong seasonal pattern previously using
hospital episode statistics from England from 1995 to 2006
[24]; however we did not find a strong seasonal compo-
nent in our study period. In our analyses, C. difficile
displayed a peak in 2006 and then reduced in prevalence
and seasonality. Therefore, the results are presented with a
caveat that the correlation coefficients with weather were
sensitive to the time-period under analysis and would be
expected to differ in a pathogen-dependent manner.
The surveillance methods for collecting data changed

over the years, with many pathogens having separate
expert surveillance datasets that are independent of this
data and some periods of enhanced surveillance or poor
surveillance. There have also been periods where an
intervention (e.g. vaccination) had been introduced, as
well as those where the surveillance had improved (e.g.
fungal infections; hospital infections), although we were
unable to systematically account for these changes in the
current analysis. Furthermore, the data were lab-confirmed
and therefore do not represent milder unreported or
undiagnosed cases which may display a different pattern of
seasonality. Finally, we could not ascertain concomitant
pathogens as they were not readily extractable from the
database. The analysis was limited as it only considered a 1
month lag effect and did not consider time-varying
confounders. Lag effects can vary for different environmen-
tal exposures. For example sunshine will induce
25-hydroxy-vitamin D production (the major circulating
form of vitamin D) in human skin; 25-hydroxy-vitamin D
will lag sunshine exposure by up to 2 months due to
metabolism within the body [25]. Also, the life-cycle of the

pathogen or vector varies between organisms producing a
lag between weather exposure and clinical manifestations
of pathogen and subsequent laboratory diagnosis [26], but
this has not been addressed in the current study. Lag effects
may be more pronounced for organisms that are indirectly
rather than directly associated with weather [27], for ex-
ample weather conditions that precede mosquito larvae
growth do not immediately result in malaria transmission,
due to development of both mosquito and pathogen being
highly complex [28]. However, given that the analysis was
undertaken at a monthly resolution some short-term lagged
correlations would be captured.
The primary strength of the analysis is the large infec-

tious disease dataset, which is nationally representative
and has information on a wide range of pathogens. We
have shown how a well-known clustering algorithm
(k-means) can be applied to these data to classify patho-
gens by their relationship with weather variables. We
have utilised a number of weather parameters from the
MEDMI database, which allowed for subtle differences
in correlation to be illustrated. The use of two methods
to detail seasonal patterns was also a strength of the
analysis. The advantages of using a TBATS model is that
it automatically selects Fourier terms and other aspects
of the model, whilst allowing for seasonality to change
over time. Wavelet analysis could be used to test for the
robustness of the findings in future analysis. By
sub-setting the data on the basis of seasonality detected
using the difference in model fit statistics between a ‘sea-
sonal’ and ‘non-seasonal’ model, it was less likely that
the correlations with climate in the following analysis

Fig. 5 Salmonella pathogens. a: Comparison of 1. S. Typhi/S. Paratyphi; 2. Seasonal salmonellas; 3. Strains showing no evidence of any seasonality
and 4. The remaining Salmonella serotypes; Seasonal serotypes: Agama, Agona, Anatum, Blockley, Bovis-Morbificans, Braenderup, Bredeney, Cerro,
Coeln, Corvalis, Derby, Drypool, Duisburg, Durham, Emek, Enteritidis, Gold Coast, Grumpensis, Hadar, Haifa, Heidelberg, Ibadan, Infantis, Java,
Kentuckey, Kottbus, Livingstone, London, Manchester, Manhattan, Mbandaka, Muenchen, Muenster, Napoli, Newport, Ohio, Oranienburg,
Othmarschen, Panama, Saint-Paul, San-Diego, Senftenberg, Sofia, Stourbridge, Thompson, Typhimurium, Zanzibar; Non-seasonal serotypes:
Adelaid, Albany, Arechavaleta, Arizonae, Colindale, Dublin, Durban, Ealing, Havana, Javiana, Marina, Mississippi, Monschaui, Montevideo, Nima,
Oslo, Pomona, Poona, Rubislaw, Weltevreden, Worthington; b: Correlation between seasonal (group 2) and non-seasonal (group 4)
salmonella pathogens
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were spurious. This is akin to defining an exclusion
criterion in the design of an epidemiological study to re-
duce the effect of bias. Having detailed the strengths and
limitations of the current analysis, in the following sec-
tions we aim to explain the results in relation to previ-
ously published work under headings based on the
explanations for seasonality outlined by Grassly and
Fraser [3]. The data linkage was at the England and
Wales level which has certain advantages (reducing
noise in the data), however public health applications
often require predictions at a variety of smaller scales
[29]. Analysis at a local level would complement the
results presented here by showing the context in which
national level predictors hold.
In addition our analyses should be undertaken in

different national contexts, as some pathogens shown
to be non-seasonal in this context (e.g. polio, P.
vivax) will be highly seasonal in non/under-vaccinated
endemic regions.
In particular, between Salmonella serotypes, there was a

clear hierarchy of strength of correlation with weather. The
high prevalence of Salmonella Enteritidis (n = 284,761) and
Salmonella Typhimurium (n = 84,204) contributed to high
seasonality for these serotypes and strong associations with
temperature and the auto-correlated sunshine and
vapour pressure. The examination of Salmonella data
showed some of the limitations that can constrain the
comparison of weather and infectious disease data.
While most Salmonella serotypes were seasonal, this
could not be demonstrated for most of these until they
were combined together with similar serotypes showing
some evidence of more cases in summer months. The
serotypes that showed no evidence of seasonality may
be associated with contamination from reptiles kept as
pets [30]. Such exposure is thought to be relatively less
seasonal in its occurrence compared to foodborne sal-
monellosis. Typhoid and paratyphoid infections in
England and Wales are usually associated with travel
abroad, particularly to the Indian subcontinent, and
this is in the late spring and early autumn [31].

Strengths and weaknesses in relation to other studies
Temperature was most often used to explain any rela-
tionship between climate and pathogens previously [1,
32]. However, there must be careful consideration of
the measure of temperature used as shown in our
analysis of Influenza A and B. Influenza A was most
strongly correlated with extreme weather events (i.e.
snow lying days), which may indicate specific circum-
stances around these events that are important for
transmission of the pathogen (i.e. temperature of below
2 °C with moisture in the air). We also found that other
temperature-related variables showed consistent associ-
ations with various pathogens. Vapour pressure has

been used previously in a study investigating the effect
of meteorological variables on the risk of Legionnaires’
disease in Switzerland [33]. Vapour pressure may have
such strong associations with several infectious diseases
such as influenza [34], because it represents a set of
meteorological parameters, i.e. warm, humid and wet
conditions. Similar inferences were made in a study of
RSV activity in the Netherlands, which found that
humidity and temperature combined explained more
variability than these parameters individually [35]. This
may be due to the dual impact of increased contact
from lower temperature and increased immunosuscept-
ibility associated with by higher relative humidity [36].
The approach here was probably not optimal for link-
ing waterborne diseases to rainfall because of the local
linkage needed, as there are significant variations by
geographic region.

Weather and vector abundance
Weather can influence pathogen prevalence indirectly
through exerting pressure on vector abundance. We
found both dengue and Plasmodium falciparum had a
seasonal pattern (although for dengue it was so weak
that it was excluded at stage 1) and for the latter
weak correlation with max temperature. This can be
explained by rising temperatures increasing mosquito
distributions and causing seasonal peaks in dengue
virus and Plasmodium falciparum (i.e. the parasite
responsible for cases of malaria) [27, 32], in the coun-
tries where the infection was likely acquired. Other
native vector-borne diseases were shown to be associ-
ated with weather in the current analysis. For ex-
ample, Borrelia burgdoferi, which infects ticks and
causes Lyme disease, had a strong correlation with sun-
shine. Borrelia burgdoferi infected tick distribution was
previously shown to correlate with season and rainfall in
Scotland [37].

Weather and pathogen survival
There is evidence to suggest that weather is a driver of
faecal-oral infectious diseases, through the increased
survival of pathogens in the environment [3]. In addition
to Rotavirus, which have enhanced survival at low
temperature, the current analysis has identified that
Aeromonas (A.sp, A. hydrophilia, A. sobria), Bacillus (B.
cereus, B. sp), Coxsackie B, Cryptosporidium sp., Giardia
lamblia, Listeria monocytogenes and Shigella sonnei may
flourish under higher temperatures. Respiratory infec-
tions transmitted by aerosols are similarly influenced by
changes in weather. The high correlations between
Astrovirus, HMPV, Mycoplasma pneumoniae, Moraxella
catarrhalis, Neisseria meningitidis and RSV, and weather
may be due to low temperatures causing increased
survival and transmission or it could be lower levels of

Cherrie et al. BMC Public Health  (2018) 18:1067 Page 11 of 13



UV in the darker winter months. Further work is needed
to determine if specific weather thresholds control
seasonality.

Weather and host behaviour
Weather may indirectly affect pathogen prevalence
through host behaviour. Salmonella is highest in sum-
mer months which may in part be due to changes in
food handling by humans during those months [11].
Pasturella multocida, which is caused by scratches or
bites from domestic animals, was shown to be highest in
July in the current analysis. Injuries caused by a cat or
dog were shown to peak in summer in Bologna, Italy
[38], which may be due to more time spent outdoors. As
mentioned vector abundance will create higher inci-
dence for certain infectious diseases such as malaria,
dengue fever and cholera, which are then found to be
higher in other countries due to travel behaviour. For
example, UK travellers returning from countries with
poor sanitation, typically India and Pakistan, in summer
months, have an increased risk of cholera due to the sea-
sonal effects on the pathogen growth conditions in these
other countries [39].

Weather and host immune susceptibility
Several infectious diseases are more prevalent in
immune-compromised individuals. Previously it was
found that patients (most of whom have medication,
fluid or blood transferred using a central line catheter)
were at increased risk of bloodstream infections caused
by Acinetobacter spp., Escherichia coli, Enterobacter
cloacae, Klebsiella spp., and Pseudomonas aeruginosa
during summer [40]. We found associations between
higher ambient temperature and Enterobactor (E. sp., E.
clocae, other named, E. agglomerans (Pantoea agglomerans),
Stenotrophomonas maltophilia, Acinetobacter baumannii,
Psuedomonas putida and Pleisiomonas shigelliodes. Mecha-
nisms for seasonality in nosocomial infections need to be
examined further to highlight whether meteorological
factors are responsible for the primary infection, complica-
tions, or both [40].

Conclusion
In this large database of infectious diseases in England
and Wales, we have provided an analysis of the seasonal-
ity of common pathogens and their correlation with
meteorological data. This is extremely important given
the context of future climate changes. Pathogens within
the 91 identified should be investigated further using the
proposed meteorological variable, following recommen-
dations proposed by Imai and colleagues [26]. In particu-
lar, future studies should be undertaken at finer spatial
and temporal aggregations, using pathogen specific

confounders and investigating a variety of lag effects and
non-linear associations.
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