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Abstract

Background: Given the importance of person to person transmission in the spread of infectious diseases, it is
critically important to ensure that human behaviour with respect to infection prevention is appropriately
represented within infectious disease models. This paper presents a large scale scoping review regarding the
incorporation of infection prevention behaviour in infectious disease models. The outcomes of this review are
contextualised within the psychological literature concerning health behaviour and behaviour change, resulting in a
series of key recommendations for the incorporation of human behaviour in future infectious disease models.

Methods: The search strategy focused on terms relating to behaviour, infectious disease and mathematical
modelling. The selection criteria were developed iteratively to focus on original research articles that present an
infectious disease model with human-human spread, in which individuals’ self-protective health behaviour varied
endogenously within the model. Data extracted included: the behaviour that is modelled; how this behaviour is
modelled; any theoretical background for the modelling of behaviour, and; any behavioural data used to
parameterise the models.

Results: Forty-two papers from an initial total of 2987 were retained for inclusion in the final review. All of these
papers were published between 2002 and 2015. Many of the included papers employed a multiple, linked models
to incorporate infection prevention behaviour. Both cognitive constructs (e.g., perceived risk) and, to a lesser extent,
social constructs (e.g., social norms) were identified in the included papers. However, only five papers made explicit
reference to psychological health behaviour change theories. Finally, just under half of the included papers
incorporated behavioural data in their modelling.

Conclusions: By contextualising the review outcomes within the psychological literature on health behaviour and
behaviour change, three key recommendations for future behavioural modelling are made. First, modellers should
consult with the psychological literature on health behaviour/ behaviour change when developing new models.
Second, modellers interested in exploring the relationship between behaviour and disease spread should draw on
social psychological literature to increase the complexity of the social world represented within infectious disease
models. Finally, greater use of context-specific behavioural data (e.g., survey data, observational data) is
recommended to parameterise models.
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Background
Research in the field of epidemiology has traditionally
employed mathematical models to successfully reproduce
the observed incidence and prevalence of diseases [1],
including influenza [2], HIV [3], smallpox (e.g., [4]), and
malaria (e.g., [5]), amongst others. These models are
important both for developing our understanding of po-
tentially novel disease strains (e.g., A/H1N1, [6]), and also
for planning responses to infectious disease outbreaks. For
example, models incorporating disease control measures
(e.g., vaccination, quarantine, school closures) can be used
to examine the contexts in which specific interventions
are likely to be more or less effective (e.g., [4, 7, 8]).
Given both the critical role of person to person trans-

mission in the spread of outbreaks (e.g., respiratory
infections, Ebola) and the importance of behavioural com-
pliance in the success of multiple infection control inter-
ventions (i.e., individuals need to consent to vaccination,
or adhere to quarantine restrictions), it is vitally important
that human behaviour is accurately represented within in-
fectious disease models. However, recent epidemiological
research has noted a limitation of traditional mathematical
models of disease spread: they often do not allow for het-
erogeneous behavioural responses within a population
(e.g., [9]). This emphasis on homogenous behaviour is
broadly inconsistent with what we know about human be-
haviour from decades of psychological research and theory
in the context of health-related behaviour change. For
example, a meta-analytic review of research involving the
Theory of Planned Behaviour (a psychological theory of
behaviour change, e.g., [10]) found that this theory ex-
plained 39% of behavioural intentions, with intentions
subsequently explaining 27% of actual behaviour [11]. In
other words, this well cited theory (implicated in 13% of
behaviour change articles, [12]), explains less than half of
all individual’s health-related behaviour. It is therefore crit-
ical that infectious disease models seeking to incorporate
human behaviour do so in a way that realistically reflects
its heterogeneous nature.
Before recommendations can be made for how to

better operationalise human behaviour in infectious dis-
ease models, we need to clearly understand how human
behaviour during an infectious disease outbreak is cur-
rently modelled. The large scale scoping review pre-
sented within this paper represents an attempt to collate
and summarise the state of the art concerning the in-
corporation of behaviour designed to protect oneself
against infection within mathematical models of infec-
tious disease spread, for example, vaccination, distancing
oneself from other individuals (social distancing), condom
use, or hand washing. More specifically, we were inter-
ested in developing a detailed understanding of: what dis-
eases and infection prevention behaviours are modelled
across the literature; how the behaviour is modelled (with

an explicit interest in understanding both the mechanism
of modelling and the components that contribute to
behaviour change), and; what theoretical background is
presented to support the modelling of infection preven-
tion behaviour (if any).
A wide range of literature drawn from the behavioural

sciences is available to assist modellers in developing
more realistic models of human behavioural responses
to infectious disease outbreaks. For instance, Susan
Michie and colleagues worked with health behaviour ex-
perts (health psychology theorists, health psychologists,
and health services researchers) to reach a consensus on
12 domains (later revised to 14 [13]) that are central to
the explanation of behaviour change [14]. Furthermore,
recent research within social psychology has suggested
an important role for social relationships in informing
individuals’ health-related behaviour (‘The Social Cure’
e.g., [15]). The outcomes of this review are presented
and discussed in the context of this available literature,
resulting in a series of recommendations designed to
help infectious disease modellers to model human be-
haviour by incorporating insights from the behavioural
sciences.

Methods
In order to ensure a transparent and systematic ap-
proach to our scoping review, we developed our search
strategy, inclusion/ exclusion criteria, and data extrac-
tion process based on Arksey & O’Malley’s scoping re-
view framework [16]. We opted to use the scoping study
methodology rather than a systematic review method-
ology as we were not concerned with systematically
assessing the quality of all available literature; a task that
would befit the explicit use of a systematic review ap-
proach. Instead, we were focused on: a) mapping and
collating the existing literature to identify current best
practice for incorporating human behaviour into infec-
tious disease models, and; b) identifying aspects of
human behaviour modelling that could be improved
through the incorporation of insights from both health
and social psychology. Both of these aims are consistent
with the use of the scoping review methodology as
described in the literature [16, 17].

Identifying relevant studies
As per Arksey and O’Malley’s [16] recommendation, our
search strategy was designed to be as comprehensive
and inclusive as possible in the first instance. The search
strategy contained terms relating to behaviour, infectious
disease, and mathematical modelling. All terms were ini-
tially developed by the first author. In the case of the
mathematical modelling terms, the first author identified
and extracted commonly occurring modelling methods/
keywords presented in the modelling literature. These
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terms were then reviewed by infectious disease model-
ling colleagues at Public Health England and Imperial
College London to identify any obvious missing terms.
All terms were ultimately discussed and agreed with by
all members of the primary research team.
The first implementation of the search strategy (run

on PubMed on 3/7/2015) yielded only 75 records (see
Results section), indicating problems with the optimisa-
tion of the strategy. Iterative development of the search
strategy ultimately yielded the final, optimised search
strategy. This strategy included title/ abstract keyword
searches and thesaurus database terms.1 The number of
papers identified was limited in the first instance by
using specific, yet ‘unexploded’ thesaurus terms to try
and maximise the number of relevant included papers
while minimising irrelevant results. Time and resource
constraints also precluded backward and forward cit-
ation searching within included papers.
Final searches were conducted on both Medline (on

29/7/2015) and Embase (on 29/9/2015) in the first in-
stance, using the Healthcare Database Advanced Search
(HDAS). A further ‘top up’ search was optimised and
run on PubMed (on 2/10/2015) to capture recently pub-
lished papers that had not yet been indexed by Medline.
The search strategy employed on Medline is presented
in the Additional file 1. Given the nature of this review,
the PICOS (Participants, Interventions, Comparisons,
Outcomes, and Study Design) criteria detailed in the
PRISMA (Preferred Reporting Items for Systematic Re-
views and Meta-Analyses) 2009 checklist [18] was deemed
inappropriate for designing the search strategy. For in-
stance, we did not anticipate the articles would include
research participants or any kind of intervention.

Selection criteria
The inclusion/exclusion criteria employed during our
review were initially developed, in conjunction with our
search strategy, to be as inclusive as possible. The a-
priori selection criteria simply specified that papers
would be included if they presented a mathematical
model pertaining to the transmission of an infectious
disease within a population, with a particular emphasis
on models that present heterogeneous behaviour by
agents. As per the scoping review framework, our study
selection criteria developed as a function of increasing
familiarity with the literature [16]. In this way we were
able to both: a) narrow the focus of the review, and; b)
reduce uncertainty in the selection process. For in-
stance, we initially proposed to include papers identi-
fied within review articles as well as grey literature (i.e.,
non-peer reviewed papers), but refined the criteria to
exclude these given the breadth of the identified peer-
reviewed literature.
The final inclusion/exclusion criteria are presented in

Table 1. In order to ensure a clear focus for the review,
the authors agreed to focus on original research articles
that present a mathematical model of human-to-human
infectious disease spread, in which individual’s self-
protective behaviour varied endogenously (i.e., within
the model) rather than as a function of specific
modeller-imposed behavioural interventions. The deci-
sion to exclude models in which behaviour is exogen-
ously determined (i.e., through modellers modifying a
single parameter value) was taken in order to ensure
that our review focused on best practice for modelling
human behaviour. For the purpose of this review, par-
ental decision-making (e.g., with respect to vaccination)

Table 1 Final inclusion/exclusion criteria used for record screening

Include Exclude

Include only articles that focus on human to human transmission Exclude all articles that do not focus on human to human transmission
(e.g., vector-borne)

Include articles with a focus on self-prevention behaviour
(i.e., preventing one’s own infection) in response to an
outbreak/epidemic (including parental decision making)

Exclude articles that focus on behaviour concerned with infection risk
in other-individuals (i.e., preventing others from being infected, possibly
by the self)

Include articles that endogenously model behavioura Exclude articles concerned with exogenous behaviour change
(e.g., an intervention) unless the behaviour is mediated by other factors
that change/respond within the model (e.g., age, risk preferences, etc.)

Include articles that incorporate individual level behavioural
elements (e.g., decision making)

Exclude ‘population models’ in which behaviour is universal
(i.e., determined by a specific exogenous parameter) within a
given group.

Include articles employing a mathematical transmission model
or modelling component to represent behaviour change

Exclude articles using only statistical/econometric models
(e.g., regression analyses, and related approaches)

Include articles that are published in peer reviewed academic journals Exclude conference proceedings, posters, grey literature.

Include articles presenting a novel mathematical model Exclude review articles

Include only articles written in the English language Exclude all non-English language articles
aSimply including a single static parameter value for behaviour change (e.g., a wholesale change from X to Y transmission rate or a static rate of behaviour
change of X% when prevalence reaches a certain threshold value or an intervention is implemented) employed uniformly was not counted as endogenous
behaviour change in the model
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was considered to be self-protective behaviour as the
parents are making the decision on behalf of the child,
who is legally unable to make the decision themselves;
the parent therefore represents a proxy for the child’s
own decision making. Furthermore, we chose to ex-
clude papers that used only statistical/ econometric
models with no mathematical transmission modelling
as this practice is commonplace within psychology (e.g.,
[19]) and so does not merit further assessment. No
limits were placed on the publication date of included
articles. These criteria substantially build upon those
employed in an earlier review of the same topic (specif-
ically, the emphasis on individual, endogenous decision
making) [20]. Furthermore, although developed and im-
plemented independently of one another, our criteria
share a common impetus with the criteria developed
and employed in another recent review of human be-
haviour within infectious disease models [21]. Consid-
ered together, these criteria therefore allowed us to
ensure, as far as possible, that the mechanisms for
modelling human behaviour reviewed herein reflect
attempts to consider the kind of complex, individual
processes underlying human behaviour identified in the
psychological literature (e.g., [14]).

Charting the data
All papers that were selected for inclusion in the review
were subjected to a standardised data extraction proced-
ure that was developed by the first author in the first
instance, and was agreed by all other authors. This pro-
cedure was revised and extended twice: once during an
interim presentation of the review outcomes to a team
of infectious disease modellers and behavioural econo-
mists on 29th February 2016, and once during a Public
Involvement workshop on 30th September 2016. Ultim-
ately, the following information was extracted from all
papers: authors; date of publication; the type of model
used; the disease that is modelled; the behaviour that is
modelled; how this behaviour is modelled; whether and
how information or awareness spread is modelled;
whether and how fading or decaying memory is mod-
elled; whether and what theoretical background for
behaviour change is provided; whether and what com-
parisons there were between the model that incorporates
endogenous human behaviour and a control model (i.e.,
a model which either does not incorporate endogenous
behaviour, or does not incorporate behaviour at all);
whether the model was parameterised or fitted to data
(and if so, which data sources); and the main conclu-
sions concerning the impact of behaviour on model out-
comes (e.g., the size of the epidemic). The extraction
criteria are presented in their entirety in the Additional
file 1. In the interests of brevity, we have focused on the
selection of the data that pertains to our central research

questions in the main results section (i.e., data relating
to modelling mechanisms, behavioural constructs, and
theoretical underpinnings). All other extracted data is
available on request from the first author.

Results
Study selection
The revised search strategy run on Medline and Embase
with a ‘top up’ search run on PubMed revealed 2872 re-
cords. When combined with the 75 papers resulting from
the initial PubMed search and the 40 additional records
identified through other sources (i.e., literature identified
when developing the rationale and protocol for the re-
view), this yielded an initial total of 2987 records. Follow-
ing the removal of duplicates, 1988 records were retained
for title, abstract, and brief full text (in the case of papers
about which the first author was uncertain) screening. A
PRISMA diagram summarising the broad stages of the
screening process is presented in Fig. 1.
At this stage, the screening process became iterative as

the criteria developed and became more exclusive. In
the first case, the first author screened the title and ab-
stract for all remaining papers, sorting these into ‘in-
clude’, ‘exclude’, and ‘unsure’ for each database search
(iteration one). The ‘unsure’ papers were then subjected
to re-assessment (with brief full text examination if/
when required; iteration two), followed by re-assessment
of the papers included in both iteration one and iteration
two (iteration three) to ensure that all included papers
met the refined exclusion criteria. Any papers that
remained ‘unsure’ were further screened by the first
author (title/abstract or brief full text where appropriate;
iterations four and five). In total, 129 papers were
retained for full text assessment following all five itera-
tions (including 79 papers for full-text review and 50
papers still ‘unsure’), with 1859 papers excluded.
The 50 remaining unsure papers were both reviewed

by the first author, and were referred to the second and
third authors for review. Of these 50 papers, 39 were
excluded at this stage, leaving 90 papers for full-text as-
sessment. Following this review process, the exclusion
criteria were refined for the final time and were applied
by the first author to all papers previously excluded
during iteration 2 onwards. This revealed 28 formerly
excluded papers that were re-included for full text ana-
lysis. Overall there were 118 papers (90 following unsure
paper assessment plus 28 formerly excluded papers)
subjected to thorough full-text assessment. Following
this final, full-text assessment 42 papers were retained
and included in the qualitative synthesis.

Notable inclusion/exclusion decisions
Despite applying our stringent inclusion/exclusion cri-
teria in an objective and systematic fashion, there is,
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unavoidably, some subjectivity involved in paper selec-
tion. In an attempt to make this subjectivity transparent,
this section will highlight some of the inclusion/exclu-
sion decisions made.
As mentioned in the Introduction, human behaviour is

not straightforward to predict. We therefore opted to
focus on papers that included complex, individual deci-
sion making with regard to the adoption or avoidance of

behaviour. A good example of such decision making
processes involves a model in which susceptible agents
calculate the cost and benefits of both risk-taking and
protective behaviours by drawing a random sample of
model agents, in conjunction with their previous esti-
mates, to draw inferences about disease prevalence and
inform their decision making [22]. Similarly, Fenichel et
al. [23] model social distancing decisions as a function of

Fig. 1 PRISMA diagram detailing the stages of the review process (adapted from [18]). Note that as this was a scoping review, an iterative
process was followed (both within the ‘records screened’ stage and subsequent dashed lines) to identify papers for inclusion in the final review
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an agent’s current-period utility, which depends on their
health state and their interaction with other individuals.
In other words, an individual’s decision making is based
on a cost-benefit calculation that is unique to that agent
(i.e., by considering their specific social contacts, e.g.,
[24], or comparison to an agent drawn randomly from
the model population, e.g., [25]).
Although these models represent a ‘gold standard’ for

inclusion in this review, there are also models that
consider individuals’ decision making, but based on
population level values. For example, whereas the ‘gold
standard’ models may incorporate cost-benefit calcula-
tions that are dependent upon characteristics specific to
the individual (e.g., behaviour among their own social
network), there are models that incorporate cost-benefit
calculations in which, for example, susceptible agents
choose a public activity level that is based on their
knowledge of overall prevalence and public behaviour
[26]. Similarly, Bhattacharyya and Bauch [27] present a
model of vaccination in which the payoff for an individ-
ual vaccinating in a given week is based on the average
vaccine coverage across the entire population. Overall,
papers of this nature were included as they represent the
complex nature of behavioural decision making, albeit
with some more population level input.
There were also additional included papers that met

the individual level behaviour requirement, but that did
not explicitly include the elements of decision making
discussed above. For example, models in which individuals
evaluate the number of behavioural adopters/infected in-
dividuals among their contacts and modify their behaviour
once an individualised threshold number of contacts
drawn from a behavioural survey is met [28, 29]. This is in
contrast to models, excluded as population level, in which
individuals behaviour is based on the general, modeller-
defined proportion of their contacts who are engaged in
that behaviour (e.g., [30, 31]).
Finally, awareness/ behaviour may spread within a

model through person to person contact (e.g., [32, 33]),
this relies on a modeller-defined global rate of contact
and thus papers of this nature were excluded. Funk,
Gilad, Watkins, and Jansen [34] instead present a more
individual-level model of awareness spreading. In this
model, an individual’s level of awareness (and conse-
quent likelihood of infection) is determined by the num-
ber of individuals that the information passed through
prior to them [34]. It therefore represents a more indi-
vidual level representation of behaviour than the stand-
ard contact – infection models described above.
As should be evident from the above, the line between

inclusion and exclusion can be broadly considered in re-
lation to the modellers’ attempt to accurately represent
the complex and multifaceted nature of individual hu-
man behaviour. The papers presented in the remainder

of this review represent, in the authors view, the best
attempts at incorporating human behaviour that are
consistent with our stringent inclusion/ exclusion criteria.

Study characteristics
As detailed previously, 42 papers were retained following
full text analysis [22–29, 34–67]. The full citation list of
included papers is included in the Additional file 1. In
this section we present data relating to the date of publi-
cation and discuss aspects of the model design used
within the included papers (e.g., the types of model,
behaviour, and disease represented within the included
papers). The data discussed through the rest of this
Results section is presented in the Additional file 2. The
full extracted data is available on request from the first
author.

Date of publication
All included papers were published since 2002 with a
broadly upwards trend until a peak in 2011 (10 papers
[25–28, 37, 42, 45, 50, 58, 66]), with a subsequent 40%
decline in papers published by 2015 (6 papers [35, 46–49,
54], Fig. 2). The 2011 (and to a lesser extent 2012) peak
corresponds with the aftermath of the A/H1N1 2009
pandemic, which ended in August 2010 [68]. Indeed, of
the 19 included papers published in 2011–2012, seven
explicitly concerned influenza (seasonal or epidemic) or
an influenza-like infection [25, 28, 29, 37, 42, 58, 65]. This
data suggests that the inclusion of individual health-
protective human behaviour within models of infectious
disease spread is a relatively recent development, which
may be related to the influenza A/H1N1 pandemic.

Country of origin
To give an indication of the geographical spread of this
modelling work, we extracted data concerning the country
in which the first author’s institution was based. Over half
of all included papers originated from the USA (23 of 42
papers [22, 23, 25, 26, 28, 29, 37, 39–42, 44–47, 49, 52–54,
61–64]), with Canada (11 [27, 35, 36, 38, 48, 51, 55–57, 65,
66]), Italy (5 [43, 50, 58–60]), China (2 [24, 67]), and the
UK (1 [34]) making up the full cohort of nations in which
the first author was based when the work was published.

Disease modelled
The majority of the models described in the included
papers did not specify the disease to which they related
(22 of 42 papers [22–24, 26, 27, 34, 36, 41, 43, 45, 50–53,
57, 59–64, 66]). Where models did relate to a specific
disease, this was most commonly influenza or an
influenza-like-infection [25, 28, 29, 35, 37, 42, 46, 48,
58, 65, 67]. This focus on influenza is consistent with
the peak publication date occurring in the aftermath of
the 2009 UK A/H1N1 pandemic.
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What behaviour is modelled
The majority of papers focused on vaccination (17 cases
[22, 24, 25, 27, 38, 40, 42, 43, 51, 52, 54–57, 65, 66]) or
social distancing behaviour (12 cases [23, 26, 41, 45, 46,
50, 53, 59, 60, 61, 63, 64]). A smaller, yet substantial pro-
portion of cases either modelled one or more general be-
havioural responses (10 cases [28, 29, 35, 37, 39, 47–49,
58, 67]) or did not specify the behaviour that was being
modelled (1 case [34]).2 There was, therefore, very little
variation in the type and nature of self-protective behav-
iour presented in the included papers.

Type of model
A range of different methods were employed across the
included papers, with some papers either detailing mul-
tiple, combined models, or incorporating components
from different modelling methods. It is therefore difficult
to precisely quantify the specific models that were most
commonly used across all papers. There are, however,
some broad conceptual or methodological similarities
that can be outlined. First, the majority of these papers
employed a compartmental model (e.g., a Susceptible-
Infectious-Recovered [SIR] model) to represent disease
spread (e.g., [23–27, 34, 36, 40, 41, 43, 45, 47, 54–56,
58–63, 67]). Second, network modelling components
(i.e., behaviour and/ or disease spread represented on a
social network) were employed across multiple papers
(e.g., [29, 35, 37, 42, 46, 49, 51–53, 56, 57, 65, 67]) as, to
a lesser extent, were Agent Based Modelling approaches
(a computational modelling approach in which agents
are individual, autonomous decision-makers [69], (e.g.,
[24, 25, 28, 35, 44, 46, 48, 49]), both to model behaviour
and disease spread. Third, a substantial proportion of
the papers explicitly incorporated economic or game
theoretic elements within their infectious disease models
(i.e., to model individual behavioural decision making)

(e.g., [22, 24, 27, 35, 38, 47, 51, 54, 61, 62, 67]).
Finally, a common approach to modelling the spread
of individual protective behaviour during an infectious
disease outbreak was to include more than one model in
the analysis [24–27, 35, 37, 46, 47, 53–55, 61, 62, 65–67];
for instance, a behavioural model (e.g., economic games,
individual decision making) linked with an infectious
disease transmission models (e.g., SIR model) within the
paper (e.g., [24, 26, 27, 47, 61]).

Synthesis of results – Infectious disease modelling of
human behaviour
As the nature of our review precluded the extraction of
detailed PICOS related information, an extensive discus-
sion of comparisons and outcomes was not appropriate.
Moreover, the relatively large number of papers included
in this review precludes an in depth assessment of the
results from all individual studies. Our analysis instead
focused on a summary and synthesis of the extracted data
related explicitly to the modelling of human behaviour.

How the behaviour is modelled
During data extraction, extensive information concern-
ing the method of modelling human behaviour was
collated. In all bar six [28, 29, 34, 37, 46, 49] of the 42
included papers, behaviour was modelled using either a
cost-benefit calculation [22, 23, 26, 27, 35, 36, 39–42, 44,
45, 47, 48, 50, 51, 53, 56, 57, 60, 61, 63, 65], behavioural
imitation [64], or an integration of the two [24, 25, 38,
43, 52, 54, 55, 58, 59, 62, 66, 67]. Typically, the cost-
benefit calculation involves agents considering the payoff
of comparing the utilities associated with engaging in
protective behaviour against the utilities associated with
remaining susceptible (e.g., [22, 41, 42, 57, 62, 65]).
Some components of these cost-benefit calculations may
be static parameters, however they can also be variable;

Fig. 2 Number of papers presenting infectious disease transmission models with endogenous behaviour change, by year of publication
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for example, in Durham and Casman’s [44] model, per-
ceived benefits of health protective behaviours are mod-
elled as a static, unchanging value, whilst perceived
susceptibility to disease is influenced by recent disease
prevalence within the model. These prevalence-based
utilities can be based on information from a single mod-
elled infection season (e.g., [37, 38]), or a combination of
current and past modelled seasons (e.g., [26, 44, 58]).
For example, whole model or local contact infection
prevalence can influence the risk of infection (e.g.,
[22, 38, 40, 43, 44, 50]), or; the payoff of a protective
strategy can be proportional to the number of indi-
viduals engaging in that strategy (e.g., [54]).
The method of incorporating behavioural imitation var-

ied across the models, but commonly involved either a
prevalence-based mechanism (e.g., adoption of the most
prevalent behavioural strategy within the model, e.g., [62,
66]) or the random selection of another individual (either
randomly from the entire model, e.g., [25, 55]; or from
within one’s contact network, e.g., [24, 52, 67]) and
comparison of the sampled strategy against one’s own. All
bar one of the 13 models that incorporated behavioural
imitation also incorporated a mechanism of cost-benefit
calculation [64]. This either involved incorporating two
distinct strategies—one for imitation and one for cost-
benefit calculation (for example, with the distribution of
strategy within the model determined by a static param-
eter [52])—or the incorporation of both imitation and
cost-benefit calculation together. For example, individuals
may select another individual within their model (i.e., ran-
domly from the entire model or from the individual’s im-
mediate neighbours) and then compare the payoffs of
their relative behavioural strategies – imitation occurs
when the target individual’s payoff is greater than one’s
own (e.g., [24, 25, 54, 55, 58, 59, 67]). The final remaining
imitation strategy (that did not incorporate both cost-
benefit calculations and behavioural imitation) models a
situation in which individuals can observe the health sta-
tus of others and are more likely to adopt the behaviour of
a healthy person than of an unhealthy person (regardless
of whether this behaviour is careful or risky) [64].
The remaining six models used a range of different

strategies for modelling behaviour, including: information-
dependent disease transmission that varies as a function
of the number of individuals the information has previ-
ously travelled through [34]; behavioural strategies
dependent upon population class (e.g., socio-economic
group, age [37]); behaviour dependent upon the individual
agent’s parameter-determined cognition (e.g., related to
media-reported illness attack rates, individual’s social
network degree [46]); behaviour dependent upon number
of infected individuals or number of individuals that
adopt the protective behaviour reaching an individua-
lised threshold [28, 29], and the use of random Bernoulli

trials to govern whether individuals cooperate with public
health interventions or not [49].

Behavioural constructs modelled
Further exploration of the data presented in the included
papers was conducted in order to identify the key con-
structs that contributed to the modelling of human behav-
iour. This is not intended as an exhaustive list of all
constructs that may contribute to behaviour, but instead
represents the constructs that were identified as most
central to the modelling of human behaviour within each
paper. Similarly, the example references are provided
below to highlight each construct, this is not an exhaustive
list of all identified papers employing these constructs;
more detail can be found in the Additional file 2.

Cognitive constructs These are the most commonly ap-
plied constructs within the included literature, and are
most typically incorporated as part of the cost-benefit
calculation models discussed above. These constructs
focus generally on the costs and benefits of remaining
susceptible and/ or engaging in protective behaviour.
For instance: risk (likelihood) of infection (this can be
based on prevalence either within one’s contacts or the
whole model population, and on either the current in-
fection season or a cumulative memory across past sea-
sons, e.g., [28, 29, 42, 56–58]), costs associated with
infection (e.g., loss of health, life expectancy, [52, 65]),
costs associated with self-protection (e.g., side effects,
monetary cost, time cost, e.g., [24, 25, 43, 65]), vaccine
efficacy (e.g., [65]), costs associated with antisocial be-
haviour (for social distancing, e.g., [61]).

Social constructs Although perceived risk of infection
as determined by prevalence is listed above as a cogni-
tive construct, the emphasis on considering the health
status of other individuals can also constitute a social
construct; particularly in the cases where estimates of
prevalence are based upon an agent’s immediate social
group or context (i.e., their neighbours) rather than
whole-population prevalence (e.g., [24, 52, 67]. The
social implications of one’s own behaviour are also
modelled; for example, individuals decision to engage in
protective behaviour (e.g., vaccination) can be influenced
by the perception that failing to modify ones behaviour
will result in harm for others, or that modifying one’s
behaviour may improve the health of other individuals
(e.g., [35, 62]). Some of the included papers also include
social norm proxies within their models. First, individ-
uals may identify the number of behavioural adopters
within their contacts and modify their own behaviour if
this proportion reaches a given threshold [28, 29]. Sec-
ond, social norms are also represented as a modification
to the payoffs for engaging in protective behaviour, that
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is, the payoff for engaging in a protective behaviour
varies as a function of the number of individuals
within the population that are also engaging in that
behaviour [54, 55].
Behavioural comparison and imitation represent one

further key social construct in the modelling of human
behaviour. As outlined above, this can involve compari-
son with another individual randomly selected from the
entire population, e.g., [25, 55], or it can be restricted to
comparisons within one’s immediate social environment,
e.g., [24, 52, 67]. Similarly, the transmission of informa-
tion, cultural traits, or awareness from person to person
can also constitute a social construct; for example, when
this transmission involves an awareness of how many
contacts information has passed through [34], or trait
transmission as a function of perceived health status of a
contact [64].

Other constructs The following additional constructs
also contributed to the modelling of health-protective
behaviour in the included papers: demographic infor-
mation (e.g., age, socio-economic status, family status,
[37, 63]) external information concerning an outbreak
(e.g., media coverage, [44, 46]), and; local temperature [46]).

Background literature concerning behaviour
Every paper included in our analysis presented back-
ground literature to support the modelling of protective
behaviour. As our primary concern is to explore the
extent to which psychological constructs and theories
have been incorporated into infectious disease models,
all papers were examined to determine whether they
cited psychological health behaviour theories (e.g., [12]).
Close examination of the papers revealed two broad
additional classifications of background literature related

to human behaviour: economic literature (e.g., game the-
ory), and previous models that have incorporated human
behaviour. All bar two of the included papers [28, 37] con-
tained literature that fit one or more of these criteria; this
indicates that we are unlikely to have missed a substantial
literature when developing our classification. The number
of papers containing each of the three classifications of
behaviour change literature is presented in Fig. 3.3

Examination of Fig. 3 reveals that although the major-
ity of papers do include either economics literature con-
cerning behaviour or previous modelling literature that
incorporates human behaviour (or both), only five of the
42 included papers make explicit reference to a well-
recognised psychological theory of health behaviour
change (see [12]) [44, 46, 48, 54, 55]. These five papers
cite a range of different theories (including one review of
cognitive behaviour theories generally [46], the Theory
of Planned Behaviour (TPB) [44], Theory of Reasoned
Action (TRA) [44], Prospect Theory (PT) [54], and the
Transtheoretical Model (TTM) [44]). However, the most
commonly cited theory of behaviour change (cited by
four of the five identified papers [44, 48, 54, 55]) is the
Health Belief Model (HBM).

Behavioural data used – Parameterisation and fit
In the first instance we were simply interested in whether
the models detailed in our included papers were applied
to, or parameterised by existing data, and if so, which data.
In the first instance, 26 papers made reference to either
previous literature or data in the parameterisation or val-
idation (fit) of their models [23, 25, 27–29, 35–38, 42–46,
48–50, 53–59, 63, 65]. Of these papers, 21 explicitly
use data sources within the paper (excluding refer-
ence to academic papers) [28, 29, 35–38, 42–44, 46,
48–50, 53–58, 63, 65]; our examination of these

Fig. 3 The number of papers included within the review (n = 42) that cite: a) psychological behaviour change theory; b) economics literature
relating to human behaviour, and/ or; c) previous mathematical models that have incorporated human behaviour. Note: individual papers
included in the review may have incorporated more than one of these categories of literature and so may be numerically represented
multiple times
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papers yielded three broad classifications of data sources.
First, survey response data is used to accurately model
human behaviour; for example, two notable examples
make use of a behavioural survey (in which participants
were asked to list the number of friends from a maximum
of 10 that would have to be vaccinated in order for the
respondent to consider vaccination) to develop individua-
lised social thresholds for behaviour adoption [28, 29].
Second, demographic (e.g., census) data is used to model
travel behaviour; for example, in [50], flight data is used to
model travel. Similarly, in [37], survey responses were
used to determine household activity. Third, epidemio-
logical data concerning vaccine uptake is used; for ex-
ample, UK pertussis vaccine coverage data [55], and
ICONA working group data concerning Italian MMR
vaccine uptake data from 1996 to 2008 [43].

Discussion
The application of our detailed search strategy across
three electronic article databases returned 42 papers
focused on the incorporation of endogenous human self-
protective behaviour within infectious disease models
that met our stringent inclusion/ exclusion criteria. All
of these papers were published between 2002 and 2015,
with a spike in 2011/ 12, with a clear Western (more ex-
plicitly, North American) bias in the country of origin;
only eight of the papers included in this review origi-
nated from outside of North America, with only two of
these eight papers originating from outside Western
Europe (both China). The majority of the included pa-
pers did not focus on a specific disease, although the
most commonly modelled was influenza. Consistent
with the disease focus, the most commonly modelled
protective behaviour was also influenza-related (vaccin-
ation). Our included papers therefore seem to reflect a
relatively recent increase in infectious disease models in-
corporating endogenous human protective behaviour
that is likely related to the A/H1N1 pandemic.
The broad range of models employed in the included

papers precludes any firm conclusions regarding best
practice for modelling both human behaviour and
infectious disease spread. Nevertheless, it was clear from
our data extraction that a substantial proportion of pa-
pers employed a dual-model method; using compart-
mental models (e.g., Susceptible-Infectious-Recovered,
Susceptible-Infectious-Susceptible models depending on
the disease) to represent disease spread, and economic-
style models/games (e.g., cost-benefit calculations) to
represent behavioural decision making. Moreover, reflect-
ing the importance of social considerations in the model-
ling of infectious disease spread, a number of models
employed social modelling components (e.g., contact net-
works; behavioural imitation) to represent the spread of
disease or human behaviour.

A range of different cognitive and social constructs
(with an emphasis on the cognitive) contributed to the
modelling of human behaviour across papers. The cogni-
tive constructs typically focused on the relative costs
and benefits of remaining susceptible or engaging in
protective behaviour. These included: perceived or actual
risk (i.e., of infection or vaccine complications), the so-
cial costs of protective behaviour/ benefits of remaining
susceptible, and the health costs of remaining suscep-
tible. On the other hand, the social constructs typically
focused on either behavioural comparison/ imitation of
others within the model, the social consequences of en-
gaging in protective behaviour, or the normative accept-
ability of engaging in a given behaviour. Very few of the
included papers made explicit reference to psychological
health behaviour theories when discussing human be-
haviour, relying instead upon literature from behavioural
economics and infectious disease modelling.
Finally, just under half of the papers included in our

review made reference to behavioural data in their mod-
elling. Among these papers, there were instances of
more thorough incorporation of behavioural data, such
as population surveys of vaccination acceptability/uptake
and travel behaviour, within the included papers.
Through synthesising the outcomes of our review with

the psychological behaviour change and health protection
literatures, we develop three central recommendations for
how modellers can ensure that human behaviour is incor-
porated in their infectious disease models in a realistic
and representative fashion: The role of psychological the-
ory; the importance of the social world, and the use of
behavioural data.

The role of psychological theory in identifying predictors
of human behaviour
Broadly speaking, the emphasis on cognitive compo-
nents within the included papers corresponds well with
the psychological literature on health behaviour change.
For example, the Integrative Model of Behavioural Pre-
diction includes behavioural belief, perceived risk, nor-
mative belief, and efficacy belief components [70].
Similarly, the emphasis on cost-benefit calculations for
engaging in protective behaviour is a feature of multiple
psychological models of health behaviour change (for ex-
ample, the HBM [71]; Protection Motivation Theory
(PMT) [72, 73], and; the Extended Parallel Processing
Model (EPPM) [74]). The social constructs identified in
our review (particularly behavioural imitation and social
norms) are also represented in several psychological the-
ories of behaviour change (e.g., Social Cognitive Theory
[75]; Social Learning Theory [76]; Theory of Planned Be-
haviour [10], and; the Integrative Model [70]). However,
as previously noted, very few of the included papers
made explicit reference to these theories. As a point of
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reference, recent work has identified 83 theories of
behaviour change from across the social sciences [12].
Furthermore, although there is overlap in the constructs
used [12], different models have been designed to reflect
contextually-specific predictors of behaviour. For ex-
ample, the HBM (cited most commonly by papers in-
cluded in this review [44, 48, 54, 55]) was designed to
help understand the predictors of preventative behaviour
in responses to a health threat [12], thus making it thor-
oughly appropriate for application within the current
context. However, both PMT and EPPM were also de-
signed to help understand predictors of behaviour in this
context, but with a particular focus on emotional re-
sponses (i.e., fear [12, 72–74]). There is, therefore, a
wealth of theoretical literature concerning predictors of
behaviour and behaviour change within the social sci-
ences that could be drawn upon to inform the modelling
of self-protective health behaviour.
Two papers cited within the current review provide an

excellent example of how infectious disease transmission
modelling can incorporate a more nuanced representation
of human behavioural decision making. Specifically, these
models combine statistical modelling (specifically logistic
regression modelling based on a combination of previous
literature and survey data) with agent-based modelling
techniques, to present detailed models of infectious dis-
ease transmission that incorporate the HBM [44, 48].
However, there is an inevitable compromise between striv-
ing for a realistic presentation of human behaviour, and
the requirement and constraints of modelling [44]. Thus,
despite the appeal of a nuanced psychological modelling
as presented in these examples, we accept that this is not
always appropriate or desirable.
The theoretical literature relating to behaviour change

may instead be more useful for identifying key predictors
of human behaviour that have been overlooked within
infectious disease modelling. Indeed, a recent paper
posits that an awareness of the main factors underlying
human behaviour within psychological models may be
sufficient for modelling infectious disease transmission
(although the authors do acknowledge the importance of
further exploring this issue [77]). By way of an example,
consider the role of emotional responding within both
PMT and EPPM [72–74]. The role of emotions as a the-
oretical domain associated with behaviour change [13],
and the relationship between emotional responses (e.g.,
anxiety) and behaviour change within the context of the
H1N1 pandemic [78], mark emotional responding as a
potentially important predictor of behavioural responses
to an infectious disease outbreak. However, no articles
included in our review made explicit reference to the
modelling of any emotional responses to an infectious
disease outbreak. One paper that fell just short of our in-
clusion criteria did include fear-based responding within

a model, and found that relatively low levels of fear-
related flight can influence the spread of an infectious
disease [32]. In other words, although it is not necessar-
ily prudent to consistently model complex behaviour
change theories in their entirety, an awareness of and
familiarity with the extensive theoretical literature on
health behaviour change could help infectious disease
modellers to examine the efficacy of previously under-
studied predictors of human behaviour within future
infectious disease models.
Our first recommendation is, therefore, that infectious

disease modellers should draw upon the extensive psy-
chological literature concerning the predictors of health
behaviour change when incorporating human behaviour
into their models. Although the explicit modelling of
complex behaviour change models in their entirety may
represent a gold standard for infectious disease model-
ling (see [44, 48]), this may not always be appropriate
[77]. Instead, we recommend that modellers familiarise
themselves with the behaviour change literature to both:
a) identify previously understudied predictors of self-
protective health behaviour, and; b) test the effect of
incorporating these predictors into future infectious dis-
ease models on model validity. Indeed, the importance
of cross-disciplinary work to inform future infectious
disease modelling has recently been highlighted within the
literature [77]. Recent work by Susan Michie and colleagues
to review the behaviour change literature represents an
excellent starting point for this endeavour [12–14].

The importance of social constructs for modelling
infection prevention behaviour
Several of the included papers make a clear attempt to
incorporate complex social constructs (e.g., contact, imi-
tation, norms) into their modelling of human behaviour.
However, as for traditional psychological theories of
health behaviour change, this involvement is at a rela-
tively surface level; more could certainly be done to im-
prove the inclusion of social constructs in the modelling
of human behaviour. There is a longstanding tradition of
research within social psychology that tells us that indi-
viduals can be members of a wide range of social/cul-
tural groups that are more or less important to them
depending upon the context that they are in (i.e., if you
are at work you may identify yourself most strongly ac-
cording to your profession, whereas if you are watching
a football match you may identify yourself most strongly
according to the team that you support). These ideas are
conceptualised formally as part of Social Identity Theory
and Self Categorisation Theory (e.g., [79–82], see also
[83]). More recent research in this tradition (such as that
presented above) has focused on applying these theories
within the context of health behaviour (‘The Social Cure’,
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see [15]), and it is this literature that is of particular rele-
vance for infectious disease modellers.
By way of example, some of the papers included in this

review do incorporate social norms for behavioural uptake
(based on either the behavioural uptake of an individual’s
contacts or population wide behavioural incidence, e.g.,
[28, 29, 54, 55]). However, we know from the literature
that ensuring the relevance of social norms and recom-
mended health behaviours to one’s salient social group is
important for behavioural uptake (e.g., [84–86]). For ex-
ample, a study of British University students found that
participants were more likely to engage in health promot-
ing behaviour (e.g., reduced alcohol consumption) to the
extent that they saw themselves as British (a comparatively
healthy social grouping) rather than as a University
student (a comparatively unhealthy social grouping [85]).
Similarly, behavioural imitation typically occurs within

the included papers as a function of behavioural preva-
lence (e.g., the most adopted behaviour across the
model, e.g., [62]) or by comparing one’s own behaviour
to the behaviour of a randomly selected other (either
drawn from one’s contacts [24] or from the model as a
whole [25]). However, the decision to imitate the behav-
iour of another individual is likely to be contingent upon
social group processes. Specifically, both the degree to
which one identifies with the social group that this other
individual represents within a given context, and the ex-
tent to which the other individual is valued (and so has
greater influence, i.e., leaders) or devalued (and so has
less influence, i.e., deviants) within this group [87]. Based
on the above, the impact of social norms and behavioural
comparison/ imitation is likely to vary as a function of: a)
the group that individuals see as important to them in that
context; b) the group membership of the individuals
within both their contact network and the population as a
whole who have adopted (or recommend) a given behav-
iour, and; c) the extent to which these other individuals
are influential within a given group.
A recent paper outlining recommendations regarding

the incorporation behavioural dynamics into infectious dis-
ease models has indicated the need to better understand
the mechanisms underlying the relationship between be-
haviour and infectious disease dynamics. Specifically, the
authors ask “To what extent do people themselves, their
social “networks”, media opinion leaders, or health care
providers affect individual behaviour?” [77], p.25). We sug-
gest that insights from the literature outlined in this sec-
tion could help to develop models designed to answer this
question. One method of achieving this could include
more detailed stratification of social grouping (with a con-
sideration of the relative importance of different groups)
within a modelled population. Surveys containing ques-
tions that ask individuals to list social groups that are im-
portant to them may be one method of obtaining a more

accurate understanding of the distribution (and import-
ance) of social groups within a given population to help
parameterise these models.
As previously discussed, we are aware of the tensions

between theoretical fidelity and the need for model sim-
plicity [77]. It is, nevertheless, important to ensure that
models are sufficiently realistic with regard to social and
epidemiological processes to allow for the accurate ex-
ploration of potential control policies [4]. For example,
the assumption of homogenous or random mixing may
be inappropriate for diseases that are transmitted via
close contact [4]. To resolve this tension, we extend a
recommendation made by Funk and colleagues when
considering the extent to which behaviour should be
modelled explicitly [77]. That is, we recommend that
modellers interested in exploring the interplay between
behaviour and disease dynamics should develop a range
of models into which social constructs of varying
complexity are incorporated, with the resulting outputs
compared. As with the previous recommendation, this
endeavour is consistent with the importance of cross
disciplinary dialogue for developing future models [77],
and literature relating to the ‘Social Cure’ [15] would be
our recommended starting point.

The use of behavioural data
Over half of all of the included papers made explicit
reference to data concerning human behaviour in the
development of their infectious disease models. Of par-
ticular interest are the papers that made use of in-depth
data sources to inform the modelling of human behav-
iour, including: epidemiological data concerning vaccine
uptake (e.g., [38, 43]); travel survey data (e.g., [28]);
census data (e.g., [53]), and; health behaviour surveys
(e.g., [28, 44, 48]). By using this detailed behavioural
data, modellers can help to ensure the realism of their
assumptions concerning human responses to an infec-
tious disease outbreak. Our third recommendation is for
modellers to ensure that the presentation of human
behaviour within infectious disease models is based on
appropriate, detailed behavioural data. Although the self-
report data collected by Mao and colleagues represents a
good initial step towards incorporating behavioural data
in infectious disease models, this data only assesses
behavioural intentions rather than actual behaviour.
Ideally, behavioural data should be observed directly
within a target population during an infectious disease
outbreak in order to ensure that the modelled behaviour
is appropriate and relevant for the target population.
This echoes a recommendation made in another recent
review of the infectious disease modelling literature [21],
thus underscoring the importance of using good behav-
ioural data within this context.
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Limitations & further considerations
Despite the detailed, in-depth nature of our review, there
are inevitably limitations and further considerations that
need to be borne in mind while considering our results
and recommendations. First, there were methodological
limitations necessitated by time and resource con-
straints. While we did ensure that the search strategy
was identical across all three electronic databases (using
the HDAS search system), we did not optimise the the-
saurus terms for each individual database. Furthermore,
we did not conduct forward and backward citation
searching of all included papers. Despite this, our search
still revealed 1988 papers (excluding duplicates), with a
total of 118 papers being subjected to the final full-text
assessment (following the brief full text review occurring
throughout our iterative screening process). We there-
fore believe that the scale and nature of our search and
review was entirely appropriate given our emphasis on
mapping and collating the extant literature rather than
producing a full systematic assessment. In addition, we
were not able to achieve full multiple-review of all of the
papers retained for full-text analysis. There were, how-
ever, several iterations of our review strategy, and we did
subject 50 papers that the first author was unsure over
to review by multiple researchers. As mentioned previ-
ously, the resulting discussions over these 50 papers
further contributed to the iterative development of our
final inclusion/ exclusion criteria. Moreover, the primary
reason for exclusion of papers at full-text stage is pre-
sented in Fig. 1 (the details of which individual papers
were excluded for which reason are available from the
first author on request).
Second, given the large number of relevant papers

identified following the title/ abstract check it was neces-
sary to concentrate our review; we chose to focus on
endogenous, individual self-protective behaviour. By nar-
rowly focusing our review, it is possible that we missed
out on other interesting attempts to model human be-
haviour in the context of infectious disease spread. For
example, our criteria precluded the inclusion of papers
concerning the treatment of sexually transmitted disease
and papers concerning the role of human behaviour in
the spread of vector-borne diseases. Interestingly, our
initial search strategy was designed to capture the full
array of academic literature concerning the modelling of
human behaviour in response to the spread of an infec-
tious disease. It would therefore be possible for our data-
set to be used to easily conduct reviews within these
(and other) contexts in future.
Thirdly, as mentioned previously, there is a Western

bias in the country of origin for the vast majority of all
included papers. Given the cultural homogeneity in our
sample, it is important to be aware of the impact that
potential cultural differences in responses to emergency

situations might have on the development of an infec-
tious disease model. In much the same way as social
group membership might impact upon behaviour during
an infectious disease outbreak, other research has sug-
gested that there may be ethnic or cultural differences in
willingness to engage in health-related behaviours. For
instance, research by Daphna Oyserman and colleagues
found that racial-ethnic minority participants saw
healthy behaviour (e.g., healthy eating) as behaviour that
middle-class White individuals (and not themselves)
engage in [84]. It is, therefore important for future mod-
elling work to carefully consider the potential influence
of both social and cultural influences on human behav-
iour in the aftermath of an infectious disease outbreak.
Finally, we are aware of two further reviews which to-

gether examine the incorporation of human behaviour
within infectious disease models over the same time
period as the current review [20, 21]. Although there is
some overlap in the data extracted and conclusions
drawn (particularly concerning the importance of behav-
ioural data for parameterising models [21]), our review
approaches the issues from an alternative perspective.
Our primary emphasis is not on the precise mechanisms
involved in infectious disease modelling, but is instead
on contextualising the models within the extant psycho-
logical literature to provide recommendation for how
this literature might be incorporated into future model-
ling efforts. By focusing more generally on the behav-
ioural constructs that are currently modelled across the
literature and how these relate to the psychological lit-
erature, our review presents a complementary analysis of
the behavioural modelling literature from an explicitly
psychological perspective. Given these differences, we
therefore recommend that infectious disease modellers
who are interested in incorporating human behaviour
into their models should draw on all available reviews
when attempting to develop future models incorporating
human behaviour.

Conclusions
Our scoping review of the infectious disease modelling lit-
erature identified 42 papers in which endogenous, individ-
ual self-protective behaviour is modelled. By extracting
data including: the type of model, behaviour, and disease
presented; the methods and constructs used to model self-
protective behaviour, and; the theoretical basis for incorp-
orating human behaviour in these models, we were able to
develop a clear understanding of the ‘state of the art’
regarding the incorporation of human behaviour into in-
fectious disease models.
By synthesising the key outcomes of this review with the

extensive psychological literature concerning health be-
haviour prediction/change, we were able to make three
key recommendations to help inform the modelling of
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infection prevention behaviour. First, modellers should
consult established health behaviour change/ prediction
theories to identify crucial, yet under-modelled behav-
ioural constructs when developing their infectious disease
models. We recommend the review of 83 theoretical
models conducted by Susan Michie and colleagues [12] as
a starting point for modellers to familiarise themselves
with the range of available theories and constructs. Sec-
ond, further stratification of social groups is recom-
mended to improve complexity of social interaction and
social influence within infectious disease models. Specific-
ally, we recommend that modellers consult ‘The Social
Cure’ literature (e.g., [15]) as an appropriate starting point.
Finally, we recommend that modellers should use detailed,
context-specific behavioural data (e.g., survey data, epi-
demiological vaccine uptake data, census data), wherever
possible, to inform the development of their models.

Endnotes
1These terms were optimised for use in MEDLINE but

were applied across the subsequent two searches. The
only modification made to the PubMed search was to re-
place the ‘adj’ adjacency operators with ‘AND’. This was
done as PubMed does not support the former type of
operator. Furthermore the use of AND rather than adja-
cency operators would only have increased the potential
number of papers identified through the search strategy.

2The final two papers concerned facemask use [44]
and sexual behaviour [36].

3As each paper could contain more than one type of
literature, they may be graphically represented in more
than one bar.
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