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Is “big data” merely a catchphrase, or does the approach
hold real promise in informing occupational and environ-
mental health? Can challenges related to messy and unrep-
resentative data and spurious findings be overcome?

Promise

The potential power of big data to inform public health
decision-making has been widely recognized [1, 2]. How-
ever, there is a paucity of published primary research
employing these methods in this journal and elsewhere
[3, 4]. The American Journal of Public Health encouraged
new research in this area and recently appointed an in-
augural associate editor for digital health [3].

Big data are typically defined in relation to the “three
Vs”, volume, velocity and variety (and more recently, vari-
ability, veracity and value) [5]. Other defining characteris-
tics include the emergence of new data sources and
providers such as social media, mobile applications and
wearable technology such as fitness trackers (the “quanti-
fied self” [6]), the need for new analytical methods such as
machine learning, non-traditional multi-disciplinary part-
nerships and real-time analysis and forecasting [7].

Along similar lines, sharing of clinical trial and other
study data has also been advocated as a means of broaden-
ing access to and more fully exploiting the collective power
of data. In addition to increasing statistical power, which
could potentially facilitate detecting small signals earlier,
which may be particularly important in environmental
health, advantages of pooling data include enhanced ability
to examine heterogeneity between diverse populations, and
consideration of novel hypotheses not tested by the original
investigators [8]. Data sharing initiatives must overcome
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barriers including providing protections for original investi-
gators, particularly those in low-resource countries [9], and
issues related to data ownership, privacy and security [8].
The Healthy Birth, Growth, and Development—Knowledge
Integration initiative is an example of a data sharing initia-
tive which has navigated many of these issues [8]. A need
has also been identified to address barriers to the inter-
national sharing of routinely collected public health data,
including technical, motivational, economic, political, legal
and ethical factors [10].

Exposure analysis is the keystone of occupational and en-
vironmental health. As a result, the concept of big data in
this context is linked closely to that of the exposome, the
totality of human environmental, occupational and other
exposures from conception to death [11]. These exposures
interact with other determinants of internal dose and health
effects characterized by their own data-rich “omes” — the
genome, metabolome, lipidome, transcriptome and prote-
ome, among others, analysis of all of which requires novel
data analysis methods [11-14]. The exposome may be
characterized using a vast array of methods including meas-
urement of both exogenous and endogenous biomarkers in
biological specimens, direct environmental monitoring
using dedicated sensors, and indirect sources such as oper-
ational data from metering and energy use, and facilities
management data [12, 15-17].

Pitfalls

As a counterpoint to the potential of big data, one of the
primary concerns is the potential for spurious findings, (de-
scribed at their worst as “fanciful rubbish” or “big error”)
that can be generated by employing “much bigger and
messier data” [2, 7]. Related to these limitations of big data
are epistemological issues around the approach to how they
are analyzed and how knowledge is generated. Some have
gone so far as to argue that big data analytics allow the data
to “speak for themselves,” free of a priori hypotheses, and
by extension of investigator bias, but others have countered
that whether desirable or not, this is unattainable since all
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data are in fact framed by the methods and constructs
under which they are collected [2, 18]. A hybrid approach
has been advanced where big data analysis, machine learn-
ing or “knowledge discovery” is guided by theory and prac-
tical experience, including a more selective approach to
choosing appropriate data sources and analysis methods, as
well as ultimately testing hypotheses generated from initial
analyses [2, 18]. An additional concern is that to the extent
that big data relies on consumer “data trails,” mobile de-
vices, wearable technology or electronic medical records,
they may exclude those with limited footprints owing to
barriers related to age, race, socioeconomic status, access to
care or health literacy [5]. This has the potential to amplify
environmental injustice concerns to the extent that it fur-
ther disadvantages populations who already experience a
disproportionate health burden related to environmental
exposures [19].

Application to occupational and environmental
health

Notwithstanding these important caveats, the potential for
big data to inform public health and occupational and en-
vironmental health more specifically has been recognized
by several funding agencies. The National Institute of En-
vironmental Health Sciences is part of a National Institutes
of Health-wide data science initiative, “Big data to know-
ledge” (BD2K), which aims to facilitate wide use of data,
develop methods, software and tools, build capacity
through training, and support data infrastructure [20]. The
European Commission recently issued a call for proposals
pertaining to “Big data supporting Public Health Policies,”
focusing on “how to better acquire, manage, share, model,
process and exploit” big data for public health purposes,
highlighting the opportunities they may provide to identify
interactions between environmental, genetic and behavioral
determinants of health [21]. Funded initiatives include the
European Exposome Cluster [22], US Health and Expo-
some Research Center: Understanding Lifetime Exposures
(HERCULES) [23], and the CANadian Urban Environmen-
tal (CANUE) Health Research Consortium [24].

Research in both occupational and environmental health
has made widespread use of large datasets for many years.
It is instructive to consider how it has been transformed
by increasing application of big data and data sharing. In
the environmental health realm, there is a long history in
air pollution epidemiology of combining routinely avail-
able administrative health or vital statistics data, with en-
vironmental monitoring data, particularly to examine
effects of short term variability in exposure using time-
series or case-crossover analysis [25]. This approach was
subsequently applied to examining the effects of long term
exposure by linking an existing cohort, the American Can-
cer Society cohort [26], to routinely available environmen-
tal data, in order to relatively inexpensively replicate
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findings from a dedicated cohort study, the Six Cities
Study [27]. This approach has now been applied to many
other cohorts, and further by creating synthetic cohorts
by linking census or tax data to vital statistics data and in-
corporating spatially comprehensive exposure data com-
bining ground based monitoring, satellite observations,
chemical/meteorological models and land use patterns
[28, 29]. There are also examples of exploiting clinical trial
data to examine associations with air pollution, unrelated
to the original study hypothesis, e.g. linking clinical data
on carotid intima media thickness as a measure of devel-
opment of atherosclerosis, to air pollution exposure [30].
While social media as a source of big data have been dis-
missed as “frivolous,” in addition to being used to track
communicable disease for surveillance purposes, there are
examples of application to chronic disease and environ-
mental health such as development of predictive models
of asthma using Twitter, Google searches and air monitor-
ing data [31]. Asthma exacerbations are well documented
in relation to air pollution exposure, and asthma also
lends itself to “self-quantification” in relation to tracking
of lung function and symptoms. Licksai et al. [32] devel-
oped a mobile application which combines these features
of asthma with air quality forecasts and advice.

Similarly, in occupational health, workplace injury and
illness data from physician reporting, employer records
and workers compensation claims have been a longstand-
ing resource for research and surveillance. Recently, the
US Occupational Safety and Health Administration
strengthened reporting requirements and improved public
access to these data, motivated partly by increasing the
utility of the data for research [33]. In Europe, investiga-
tors employed 20 physician reporting and compensation
claim datasets from 10 countries to examine trends in oc-
cupational disease incidence, accounting for the diversity
of data collection methods employed in each country, and
demonstrated the potential of data sharing in this area
[34]. A key aim of exploiting these data is to improve the
capacity to predict and prevent injury and disease in the
workplace [35]. Evaluating longer term sequelae of work-
place disease and injury requires different types of data.
Scandinavia has a long tradition of linking cohort studies
to register data to gain insight into predictors of sick leave
and work disability [36]. The social security system is a de-
termining factor for the content of registers and there
may be important differences between countries. While
sick leave benefits are taken over by the social security sys-
tem in Scandinavia relatively early in the process, in con-
trast in the Netherlands, the employer is responsible for
payment of salary during the first two years of sick leave.
As a result, there is no national registration of sick leave,
which is a disincentive for employers for valid company
registration, reducing its validity as a measure. Nonethe-
less, first attempts are being made in the Netherlands to
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link occupational health cohort data to national registers
that are a reliable source for measures related to source of
income [37]. Social security data have also been widely
used to examine work disability benefits and transitions
from work to retirement.

Conclusions

Big data and data sharing have the potential to inform oc-
cupational and environmental health by exploiting innova-
tions related to non-traditional data sources or providers
and novel partnerships. Promising applications include
real time analysis and forecasting, and innovative analyses
of clinical trial or observational data originally collected
for other purposes. However, in order to support these in-
novations, advances are also required in data curation,
protection of privacy and security, as well as data analysis
methods. Challenges related to messy and unrepresenta-
tive data and spurious findings, as well as epistemological
issues and equity considerations must also be addressed.
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