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Abstract

Background: The Australian Longitudinal Study on Male Health (Ten to Men) used a complex sampling scheme to
identify potential participants for the baseline survey. This raises important questions about when and how to
adjust for the sampling design when analyzing data from the baseline survey.

Methods: We describe the sampling scheme used in Ten to Men focusing on four important elements: stratification,
multi-stage sampling, clustering and sample weights. We discuss how these elements fit together when using baseline
data to estimate a population parameter (e.g., population mean or prevalence) or to estimate the association between
an exposure and an outcome (e.g., an odds ratio). We illustrate this with examples using a continuous outcome
(weight in kilograms) and a binary outcome (smoking status).

Results: Estimates of a population mean or disease prevalence using Ten to Men baseline data are influenced
by the extent to which the sampling design is addressed in an analysis. Estimates of mean weight and smoking
prevalence are larger in unweighted analyses than weighted analyses (e.g., mean = 83.9 kg vs. 81.4 kg; prevalence = 18.0 %
vs. 16.7 %, for unweighted and weighted analyses respectively) and the standard error of the mean is 1.03 times larger in
an analysis that acknowledges the hierarchical (clustered) structure of the data compared with one that does
not. For smoking prevalence, the corresponding standard error is 1.07 times larger. Measures of association
(mean group differences, odds ratios) are generally similar in unweighted or weighted analyses and whether
or not adjustment is made for clustering.

Conclusions: The extent to which the Ten to Men sampling design is accounted for in any analysis of the
baseline data will depend on the research question. When the goals of the analysis are to estimate the prevalence of a
disease or risk factor in the population or the magnitude of a population-level exposure-outcome association, our
advice is to adopt an analysis that respects the sampling design.
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Background
Like many large-scale health surveys, the Australian
Longitudinal Study on Male Health (Ten to Men) used a
complex sampling scheme. This choice was made be-
cause sampling the target population using a simple ran-
dom sample was not feasible. Sampling theory therefore
plays an important role in our study design because it
provides a framework for efficiency gains [1]. In Ten to
Men, the key elements of the sample design were the
use of stratification, multi-stage sampling and cluster
sampling to select prospective participants and invite
them to take part in the study. This design has implica-
tions for the analysis of data from Ten to Men for both
inferences about population means or prevalences, and
for quantifying the magnitude of associations between
exposures and outcomes. Such analysis implications are,
however, often poorly understood. At the extreme, views
differ on whether to always adjust for aspects of the
study design and sampling scheme at the analysis stage
(including accounting for unequal sampling fractions
using inverse-probability-of-selection sampling weights)
or to never adjust. Korn and Graubard [2] give an excel-
lent example of this controversy using US National
Health and Nutrition Examination Surveys (NHANES).
At the heart of this debate is a trade-off between miti-
gating against bias in estimation while faithfully repre-
senting the repeated sampling variation of the
corresponding estimators in order to ensure accurate
inferences.
Our aims here are to (1) describe each of these com-

peting elements as they relate to Ten to Men; (2) detail
and discuss the calculation of inverse-probability-of-se-
lection sampling weights; and (3) provide recommenda-
tions for analyses that acknowledge these aspects of the
design. We use a continuous variable (weight in kilo-
grams) and a binary variable (current smoking status:
smoker or non-smoker) as illustrations throughout. Our
attention is restricted to the baseline (i.e. prevalent) wave
of data collection. Our analyses are conducted in Stata
[3], but the same principles and procedures apply to
other statistical packages.

Methods
Overview of the ten to men sampling design
Stratification
When stratification is used in a survey design, it refers
to the population being partitioned into groups prior to
selection of the sample [4]. Samples are then taken inde-
pendently within each stratum.
The Australian Statistical Geographic Standard [5]

(ASGS) used by the Australian Bureau of Statistics
(ABS) classifies each location within Australia as belong-
ing to one of five levels of remoteness: “Major Cities”,
“Inner Regional”, “Outer Regional”, “Remote” and “Very

Remote”. It was not feasible to survey remote and very
remote regions because of the travel time required for
fieldworkers to recruit potential participants into the
study (less than 2.3 % of the population lives in rural
and remote Australia, an area that covers most of the
country), so the study was restricted to sampling from
the first three strata, that is, the major cities, inner re-
gional and outer regional areas. Inner and outer regional
areas were over-sampled to ensure that questions related
to regional disparities in male health could be addressed
adequately. These areas therefore represented 23 % and
20 % of the sample at baseline (for inner and outer re-
gional area, respectively) compared with population pro-
portions of 18 % and 9 %.

Multi-stage sampling
Sitting alongside the ASGS classification of remoteness
is the ABS division of the population into “statistical
areas”. The smallest units are Mesh Blocks (there are
about 350,000 of these, containing on average about 75
people each), which aggregate into Statistical Area 1s
(SA1s, with an average of 400 people and ranging from
200 to 800), then SA2s (averaging 10,000 people with a
range of 3,000–25,000), SA3s, SA4s and finally SA5s
which are the six Australian States and two Territories.
Ten to Men employed a multi-stage design. For the

major cities stratum, SA1s were sampled first (propor-
tional to size, where size referred to the number of boys
according to the ABS 2011 Census of Population and
Housing) and all households were sampled within SA1s.
For the inner and outer regional strata, SA2s were ran-
domly sampled first (also proportional to size using the
same definition as that used for major cities) and then a
fixed number of SA1s were randomly sampled within
SA2s; at the final stage, households were sampled within
SA1s. This additional step in the hierarchy of sampling
SA2s for the inner and outer regional strata was intro-
duced to reduce the distance fieldworkers had to travel.

Clustering
For all three strata, all eligible males within an eligible
household were invited to participate in the study (see
Table 1 in Australian Longitudinal Study on Male
Health – Methods in this collection for a definition of
the eligibility criteria). Thus, within a stratum, Ten to
Men can be described as a cluster sample of eligible
households, with SA1s defining the cluster. Households
were therefore an additional level in the completely-
nested hierarchy implied by the multi-stage sampling
design.

Sample weights
The sampling design of Ten to Men implies that individ-
uals within the major cities stratum did not have equal
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probabilities of selection because individuals living in
SA1s with a larger number of boys (according to the
ABS 2011 Census of Population and Housing) are more
likely to be invited to participate since sampling was
proportional to size where size refers to the number of
boys. Although individuals in the inner and outer re-
gional strata did, in theory, have equal probabilities of
selection (due to the selection of the fixed number of
SA1s within each SA2 effectively “cancelling out” the
sampling of SA2s with probability proportional to their
size), this was violated in practice due to variation in the
participation fractions between households, SA1s and
SA2s. This variability was an issue for the major cities
stratum as well.
Sampling weights can be used to address bias in esti-

mation due to unequal sampling fractions and to ac-
count for non-response when estimating a population
parameter. These sampling weights are calculated as the
inverse of the individual probability of participation. For
inner and outer regional participants the weights are the
inverse of the product of (1) the probability of an SA2
being selected: (2) the probability of an SA1 within SA2
being selected; and (3) the probability of an individual
within an SA1 both agreeing to participate and providing
usable data. For major city participants, the weights are
the inverse of the product of (1) the probability of an
SA1 being selected and (2) the probability of an individ-
ual with an SA1 agreeing to participate and provide us-
able data. Where a stratum is under-represented in the
sample compared to the population then the sampling
weights will up-weight data from individuals in that
stratum in the analysis. Details on the calculations of the
baseline sampling weights for Ten to Men are given in
Appendix 1.

Results and discussion
Implications for estimating population means,
prevalences and totals
Estimating means, prevalences or totals from a complex
survey as though they were generated from a simple
random sample has the potential to generate biased

estimates and for the stated precision of these estimates
to differ from the variability that we would observe in
them under repeated sampling. The multi-stage sam-
pling and selection of household clusters must therefore
be acknowledged and accommodated when estimating
population parameters. This can be done by either speci-
fying a full multi-level model (by using a generalised lin-
ear mixed model) or by using a set of “survey”
commands, both of which are available in most standard
statistical software packages (including Stata). The
multi-level model approach allows us to account for all
levels of the hierarchy (i.e., individuals nested within
households, households nested within SA1s etc.) but
does not allow the effect of the sample weights to be in-
corporated into the analysis at the level of the individual
participant (only group level weights are allowed at least
for the suite of mixed models procedures we considered
in Stata, e.g., mixed, melogit, and meglm). This means
the estimates generated from this procedure may be
biased.
The survey commands (at least those implemented by

Stata and other major programs) only allow proper ac-
counting for clustering at the top level of the multi-stage
sampling hierarchy. This distinction is relevant in Ten to
Men because for major cities, SA1s sit at the top of the
hierarchy, whereas for the inner and outer regional
strata, the larger SA2s were the first unit to be sampled.
However, these commands do allow sample weights to
be specified in the analysis. Consequently there is not a
single procedure implemented in the commonly used
software platforms that can account for the multi-stage
design of the survey (which affects the calculation of the
variance estimates) and produce unbiased estimates of
population parameters when using data from all three
strata (which the weights are intended to address).
We now demonstrate four approaches that reflect dif-

ferent ways of dealing with these issues when estimating
a population parameter. Table 1 shows the mean weight
(in kilograms) and a 95 % confidence interval (CI) for
the corresponding population parameter calculated with
no adjustment for the survey design or the sample

Table 1 Estimated mean weight (kg) and prevalence of smoking using seven different approaches

Adjustment for
clustering?

Levels of sampling
hierarchy used?

Adjustment for
stratification?

Sample weights
used?

Weight, kg
Mean (95 % CI)

Current smoker
Prevalence (95 % CI)

A No None No No 83.9 (83.6 to 84.2) 18.0 (17.4 to 18.6)

B No None No Yes 81.4 (80.9 to 81.9) 16.6 (15.9 to 17.4)

C Yes SA1, SA2, household No No 84.0 (83.5 to 84.5) NR

D Yes SA1 Yes Yes 81.4 (80.8 to 81.9) 16.7 (15.7 to 17.6)

E Yes SA1 No Yes 81.4 (80.8 to 81.9) 16.7 (15.7 to 17.6)

F Yes SA2 Yes Yes 81.4 (80.8 to 81.9) 16.7 (15.6 to 17.7)

G Yes SA2 No Yes 81.4 (80.8 to 81.9) 16.7 (15.6 to 17.7)
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weights (row A), no adjustment for the survey design
but using sample weights (row B), using multi-level
modelling without adjustment for the weights (row C)
and using survey commands that allow for different
combinations of adjustment for the multi-stage design
and stratification as well as inclusion of the weights
(rows D to G). Rows D and E present results using the
SA1 as the primary sampling unit (PSU, the top level of
the sampling hierarchy) whereas rows F and G uses the
SA2 as the PSU. Rows D and F present estimates that
are adjusted for stratification but E and G do not. Different
estimates of smoking prevalence using the same analytic
methods are also provided in Table 1, with the exception
that the result from a multi-level logistic regression is ex-
cluded because such models do not estimate a parameter
that has a population-level interpretation [6] and are thus
not directly comparable to the other estimates.
As expected, the estimates of the population mean

weight and the confidence intervals differ depending on
the extent to which the sampling design characteristics
are accommodated by the estimation procedure. When
the population mean is estimated under the assumption
of simple random sampling (row A), the mean weight is
83.9 kg (95 % CI 83.6 to 84.2 kg). Repeating this analysis
but incorporating adjustment for the sample weights
(row B) gives a mean weight of 81.4 (95 % CI 80.9 to
81.9). Using a multi-level modelling strategy that adjusts
for the correlated observations within households, SA2s
and SA1s (but does not adjust for stratification or sam-
ple weights) gives a similar mean to the unweighted ana-
lysis of 84.0 kg (95 % CI 83.5 to 84.5 kg) (row C). This
mean appears to be biased probably because it does not
account for the sample weights. Population estimates
that account for the top level of the sampling hierarchy
as well as weighting (and either with or without adjust-
ment for stratification) are all identical to the level of
precision reported (rows D to G). For example, when
the SA1 is used as the PSU and the estimates are ad-
justed for stratification, the mean is 81.4 kg (95 % CI
80.8 to 81.9). This estimate is the same for all other
combinations of PSU (SA1 vs SA2) and adjustment for
stratification (no adjustment vs adjustment).
The results for analysing a binary variable, current

smoking status, paint a similar picture. The estimate of
the population prevalence is highest when no adjust-
ment is made for the sampling scheme. It is lower when
adjustments are made for this, with no appreciable dif-
ference between using the SA1 or the SA2 as the PSU or
making adjustment for stratification.

Implications for estimating associations
Estimates of the association between variables (e.g., self-
rated health and weight or smoking status) may also be
affected by how the sampling scheme is treated in the

analysis [7, 8]. Most modern statistical programs have
commands that enable linear, logistic and other multi-
variable regression techniques to be used that account
for stratification, multi-stage sampling and sample
weights. The question that arises is: When should these
commands be used? The conditions under which clus-
tering can be ignored in the analysis of data are quite re-
strictive. In general, to be able to ignore clustering
without producing variance estimates (and therefore
confidence intervals) that are too narrow, we require at
least that the distribution of the outcome of interest
within given levels of risk factors and covariates does
not differ between clusters [2]. In most scenarios it is far
from obvious that this condition is satisfied: It is difficult
to test empirically and will be untestable for unmeasured
risk factors, covariates and confounders. Moreover,
introducing adjustments for a stratified, multi-stage,
clustered sampling scheme and for sample weights to ac-
commodate unequal sampling fractions can lead to esti-
mates that are highly variable [4]. This has implications
for detecting associations between the exposure and an
outcome. Against this, theoretical work by Scott and
Holt [7] and by Neuhaus and Segal [8] show that esti-
mates of measures of association in linear and logistic
regression models are generally unbiased if we fail to ac-
count for clustering in the analysis. Lumley [9] makes a
case for not using sample weights based on the argu-
ment that regression models often includes confounders
and covariates that explain the variation in weights. This
adjusts for any distortions in estimating the magnitude
of the association between the exposure and the out-
come that would have resulted from ignoring unequal
sampling fractions. It is true that for some population-
level measures of association the unbiasedness and vari-
ability of their estimates will not depend on whether or
not the analysis incorporates the stratum-specific sam-
pling fractions, but a full description of such scenarios is
beyond the scope of this paper (see Lumley [9]). It is
worth noting, however, that the variance of the measures
of association, and as a consequence, the standard er-
rors, confidence intervals and p-values calculated from
them may be incorrect. Scott and Holt noted the extent
of this mis-specified precision is generally less severe
than when estimating means and prevalences.
We explore these issues with data examining the asso-

ciation between self-rated health and weight using linear
regression. The measure of interest is the difference in
mean weight (in kilograms) between two groups: those
reporting excellent or very good health and those report-
ing good, fair or poor health. We compare results under
a variety of conditions: where there is adjustment for the
multi-stage design (no adjustment, adjustment for all
stages of the hierarchy using multi-level modelling, ad-
justment using the SA1 as the PSU, adjustment using
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the SA2 as the PSU), adjustment for stratification (no
adjustment, adjustment using the stratification vari-
able as a covariate, adjustment using the survey com-
mand), and use of sample weights (yes or no). We
also examine the association between self-rated health
and smoking status using logistic regression, where
the effect size of interest is an odds ratio. We again
omit the results from analyses that use a multi-level
logistic model for the same reasons discussed in the
previous section.
In an analysis that makes no adjustment for the

multi-stage design or for stratification or weighting
(Table 2, row A), the mean difference between the
two groups is −5.1 kg (95 % CI −5.8 to −4.5 kg). That
is, those who describe themselves as having very good
or excellent health report are, on average, 5.1 kg
lighter than those who have good, fair or poor health.
Adjusting for stratification by using a series of indicator
variables for remoteness to enter it into the model as a
categorical variable (row B) also gives a mean difference
of −5.1 kg with 95 % CI −5.7 to −4.4 kg. Repeating the
analysis in row A but with the use of sample weights to
adjust for bias gives a smaller difference of −4.4 kg, but
with a wider confidence interval than observed previously
(95 % CI −5.6 to −3.3). Adjustment for stratification makes
only a small difference to this result (row D).
Repeating the analysis to account for all stages of sam-

pling using a multilevel model (rows E and F) gives a
mean difference of −4.9 kg (95 % CI −5.5 to −4.2), with
further adjustment for stratification giving a difference
of −4.8 kg (95 % CI −5.5 to −4.2). As with estimating
population prevalences using multi-level models, it is
not possible to easily account for the sample weighting
in this context.

The final four rows in Table 2 show results obtained
using the survey commands to estimate the population
mean difference. When SA1s are defined as the PSU and
sample weights are used (row G), the mean difference be-
tween the two groups is −4.4 kg (95 % CI −5.5 to −3.2).
When no weights are used, the difference is −5.1 kg (95 %
CI −5.8 to −4.4). Using the SA2 as the PSU gives similar
results (rows I and J).
Thus, the estimate of the mean difference ranges

from −4.3 kg to −5.1 kg. Taken as a whole, these re-
sults suggest that it is the adjustment for the sample
weights that has the biggest impact on the results,
with the adjustments for the sampling hierarchy and
stratification having relatively minor influences on the
estimate of the effect size. Nonetheless, all analyses
would lead to the conclusion that the mean weight
differs between the two groups, with those who have
excellent or very good health being 4 to 5 kg lighter
than those who have good, fair or poor health. This
suggests that the way in which the sample design is
accounted for makes some difference to the estimate
of this measure of association on this occasion. This
is supported by the second analysis in Table 2, which
shows that the odds of being a current smoker are
approximately 60 % lower for those with excellent or
very good health compared with the odds for those
with good, fair or poor health regardless of the way
in which the study design is accommodated in the
analysis.

Conclusion
Analyses of baseline data from Ten to Men will require
explicit adjustment (through the use of sampling weights
or procedures for clustering) for the sampling design in

Table 2 Estimated difference in mean weight and estimated odds ratios between participants with excellent or very good health
and participants with good, fair or poor health

Adjustment for
clustering?

Levels of sampling
hierarchy used?

Adjustment for
stratification?

Sample
weights used?

Weight:
Excellent or very good health
(vs good, fair or poor health):
Difference (95 % CI)

Current smoker:
Excellent or very good health
(vs good, fair or poor health):
Odds Ratio (95 % CI)

A No None No No −5.1 (−5.8 to −4.5) 0.39 (0.36 to 0.42)

B No None Yes No −5.1 (−5.7 to −4.4) 0.39 (0.36 to 0.43)

C No None No Yes −4.4 (−5.6 to −3.3) 0.42 (0.37 to 0.47)

D No None Yes Yes −4.3 (−5.5 to −3.2) 0.42 (0.38 to 0.47)

E Yes SA1, SA2, household No No −4.9 (−5.5 to −4.2) NR

F Yes SA1, SA2, household Yes No −4.8 (−5.5 to −4.2) NR

G Yes SA1 Yes Yes −4.4 (−5.5 to −3.2) 0.42 (0.37 to 0.47)

H Yes SA1 Yes No −5.1 (−5.8 to −4.4) 0.39 (0.35 to 0.42)

I Yes SA2 Yes Yes −4.4 (−5.5 to −3.3) 0.42 (0.37 to 0.47)

J Yes SA2 Yes No −5.1 (−5.9 to −4.4) 0.39 (0.35 to 0.43)
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order to generate unbiased estimates with reliable mea-
sures of their precision that reflect their variability under
repeated sampling. The application of adjustments will
depend largely on the particular research question and
the proposed statistical analysis. While we have illus-
trated these concepts in the context of the Ten to Men
study, the issues are relevant to all clustered survey
designs.
For estimates of a population prevalence and totals,

the sampling design (including sample weights) should
be adjusted for, since the estimators will (most likely) be
biased and its precision understated if unadjusted, be-
cause the sampling variability will depend on the
sampling fractions and hierarchical structure of the
data. The issues are defining the PSU (SA1 or SA2)
and whether or not to adjust for stratification. Re-
garding the PSU, our results show little difference in
practice between using the SA1 or the SA2 as the
PSU. Our recommendation is therefore to treat SA1s
as the PSU. Similarly, while adjustment for stratifica-
tion made no appreciable difference in this instance,
we also recommend adjusting for stratification. In
support of this, Appendix 2 contains the variable
names and the Stata code (using the svy suite of
commands or its equivalent in other packages) that
allow this recommendation to be implemented. It is
less clear with regard to measures of association be-
tween exposure and outcome whether ignoring the
sampling design and, in particular, not using weights
in analyses, will lead to biased estimates. On balance,
we favour an approach that respects the sampling de-
sign and therefore incorporates this information into
the calculation of any effect sizes.
Some researchers may find it helpful to conduct sensi-

tivity analyses, where they compare unadjusted and ad-
justed estimates of prevalence and associations to
determine which of the results are sensitive to the extent
that the sampling scheme is accommodated in the ana-
lysis. We support this, with the proviso that a statistical
analysis plan be prepared prior to commencing analysis
(see Thomas and Peterson [10] or Rubin [11] for excel-
lent discussions on the value of doing this in observa-
tional studies).

Appendix 1
Calculating weights using inverse probability of selection
In this appendix we provide details of the calculation of
the individual-level sampling weights, which are based
on the inverse of the individual probability of selection
for invitation to participate in the study.
Denote

� the number of SA1s selected across the remoteness
stratum as K;

� the kth SA1 as SA1k for k = 1, 2, …, K;
� the true number of in-scope boys, young men and

adults currently residing in SA1k as TB
k , T

YM
k and

TA
k respectively;

� the number of “ABS” boys, young men and adults
in SA1k according to the 2011 Australian Bureau of
Statistics (ABS) Census of Population Housing as
CB
k , C

YM
k and CA

k respectively;
� the number of boys, young men and adults who

were “found” (approached and invited to participate
in the study) in SA1k be FBk , FYMk and FAk
respectively; and

� the number of boys, young men and adults who
provided “usable” data in SA1k as UB

k , U
YM
k and UA

k

respectively. Note that all participants who
provided usable data were, by definition, found (see
previous dot point), but they may or may not have
been represented in the SA1k in which they resided
when recruited to “Ten to Men” during the 2011
Census.

Major Cities Stratum
Boys
For a boy in SA1k the probability of (1) that SA1k being

selected; (2) that boy then being found; and finally (3) that
boy providing usable data, denoted PBk, is

PB
k ∝Pr SA1kselectedð Þ � Pr Boy found jSA1kselectedð Þ

� Pr Boy provides usable data j Boy foundð Þ
PB

k ∝CB
k � FBk=TB

k � UB
k=FBk

∝CB
k � UB

k=TB
k

ð1Þ

Note that the number of found boys FBk cancels out of
calculation of PBk. We calculate the weight WB

k as
inversely proportional to PBk

WB
k ∝1=CB

k � TB
k=UB

k

∝TB
k=CB

k � 1=UB
k

where the constant of proportionality is calculated so
that the sum of the weights for all boys providing usable
data across all selected SA1’s in the Major Cities stratum
is NB. The true number of in-scope boys TB

k residing in
SA1k can never be known, so we must make an assump-
tion about its value. We assume that TB

k = CB
k. This as-

sumes that ABS number of boys from the 2011
Australian Census is the true number of in-scope boys
residing in SA1k. This assumption gives

WB
k∝1=UB

k

Here the weight for SA1k is inversely proportional to
the number of boys providing usable data for SA1k,
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effectively up-weighting data from SA1s with low par-
ticipation fractions and thus poor participation.
Young Men and Adults
Following the calculation in Equation (1) above we get

PYM
k ∝CB

k � FYMk=T
YM

k � UYM
k=F

YM
k

∝CB
k � UYM

k=T
YM

k

WYM
k ∝1=CB

k � TYM
k=U

YM
k

∝TYM
k=C

B
k � 1=UYM

k

which, when we replace TYM
k with CYM

k , becomes

WYM
k ∝CYM

k=C
B
k � 1=UYM

k

Similarly for adults we get

WA
k ∝CA

k=C
B
k � 1=UA

k

Inner and Outer Regional Strata
Boys
For the inner and outer regional strata SA1s have

equal probability of selection, so the term Pr(SA1k se-
lected) does not vary within a remoteness stratum and
can therefore be absorbed in the constant of
proportionality.
To illustrate, for a boy in SA1k the probability of

selection PBk is

PB
k ∝ Pr Boy found jSA1kselectedð Þ

� Pr Boy provides usable data j Boy foundð Þ
∝FBk=TB

k � UB
k=F

B
k

∝UB
k=T

B
k

ð2Þ
Replacing TB

k with CB
k based on the assumption above,

gives

PBk ∝UB
k=C

B
k

and therefore

WB
k ∝CB

k=U
B
k

Young Men and Adults
Similarly for young men and adults we get WYM

k ∝
CYM
k /UYM

k and WA
k ∝ CA

k /U
A
k

Appendix 2
Stata code for incorporating baseline survey
characteristics
In Stata, the survey characteristics of the study must be
declared prior to undertaking any analysis that acknowl-
edges the sampling design. The command that brings
the stratification, multistage design (at the PSU level)

and sample weights together for the Ten to Men base-
line data is:

where is the variable representing the PSU
(the SA1), is the variable for the sample
weight, and is the stratification variable.
A population mean is then estimated with a command

such as:
where is a variable representing weight in ki-
lograms (note that in the analyses reported here
any values less than 0 kg or greater than 200 kg were set
to missing prior to estimating the parameters). Similarly,
a population proportion can be estimated with the
command:
Measures of association (e.g. a regression coefficient,

an odds ratio) is estimated with commands like:

where represents the predictor self-rated health (in
this case an indicator variable, hence the prefix).
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