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Abstract

Background: There is an urgent need to understand how the provision of information influences individual risk
perception and how this in turn shapes the evolution of epidemics. Individuals are influenced by information in
complex and unpredictable ways. Emerging infectious diseases, such as the recent swine flu epidemic, may be
particular hotspots for a media-fueled rush to vaccination; conversely, seasonal diseases may receive little media
attention, despite their high mortality rate, due to their perceived lack of newness.

Methods: We formulate a deterministic transmission and vaccination model to investigate the effects of media
coverage on the transmission dynamics of influenza. The population is subdivided into different classes according
to their disease status. The compartmental model includes the effect of media coverage on reporting the number
of infections as well as the number of individuals successfully vaccinated.

Results: A threshold parameter (the basic reproductive ratio) is analytically derived and used to discuss the local
stability of the disease-free steady state. The impact of costs that can be incurred, which include vaccination,
education, implementation and campaigns on media coverage, are also investigated using optimal control theory.
A simplified version of the model with pulse vaccination shows that the media can trigger a vaccinating panic if
the vaccine is imperfect and simplified messages result in the vaccinated mixing with the infectives without regard
to disease risk.

Conclusions: The effects of media on an outbreak are complex. Simplified understandings of disease
epidemiology, propogated through media soundbites, may make the disease significantly worse.

Introduction
Infectious diseases are responsible for a quarter of all
deaths in the world annually, the vast majority occurring
in low- and middle-income countries [1]. There are dis-
eases such as SARS and flu that exhibit some distinct fea-
tures such as rapid spatial spread and visible symptoms
[2]. These features, associated with the increasing trend
of globalization and the development of information
technology, are expected to be shared by other emerging/
re-emerging infectious diseases. It is therefore important
to refine classical mathematical models to reflect these
features by adding the dimensions of massive news cov-
erage that have great influence not only on the individual
behaviours but also on the formation and implementa-
tion of public intervention and control policies [2].

People’s response to the threat of disease is dependent
on their perception of risk, which is influenced by public
and private information disseminated widely by the media.
While government agencies for disease control and pre-
vention may attempt to contain the disease [3], the general
information disseminated to the public is often restricted
to simply reporting the number of infections and deaths.
Mass media are widely acknowleged as key tools in risk
communication [4,5], but have been criticised for making
risk a spectacle to capitalise on audience anxiety [6,7].
The original interpretation of media effects in communi-

cation theory was a “hypodermic needle” or “magic bullet”
theory of the mass media. Early communication theorists
[8,9] imagined that a particular media message would be
directly injected into the minds of media spectators. This
theory of media effects, in which the mass media has a
direct and rapid influence on everyday understanding, has
been substantially revised. Contemporary media studies
analyses how media consumers might only partially accept
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a particular media message [10], how the media is shaped
by dominant cultural norms [11,12] and how media con-
sumers resist dominant media messages [13,14]. It follows
that media effects may sway people into panic (eg swine
flu), especially with a disease where scientific evidence is
thin or nonexistent. Conversely, media may have little
effect on seasonal diseases (eg regular influenza).
Media reporting plays a key role in the perception,

management and even creation of crisis [6]. Since media
reports are retrievable and because the messages are
widely distributed, they gain authority as an intersubjec-
tive anchorage for personal recollection [4]. At times of
crisis, non-state-controlled media thrive, while state-
controlled media are usually rewarded for creating an
illusion of normalcy [6]. Media exposure and attention
partially mediate the effects of variables such as demo-
graphics and personal experience on risk judgments [5].
The role of media coverage on disease outbreaks is thus
crucial and should be given prominence in the study of
disease dynamics.
Klein et al., [15] noted that much more research is

needed to understand how provision of information
influences individual risk perception and how it shapes
the evolution of epidemics; for example, individuals may
overprotect, which can have additional consequences for
the spread of disease. An example of such complex
dynamics is the 1994 outbreak of plague in a state in
India: after the announcement of the disease, many peo-
ple fled the state of Surat in an effort to escape the dis-
ease, thus carrying the disease to other parts of the
country [16]. Even though information on the number of
cases and deaths can have an adverse effect, the number
of those vaccinated has not been given prominence.
A handful of mathematical models have described the

impact of media coverage on the transmission dynamics
of infectious diseases. Liu et al.[2] examined the potential
for multiple outbreaks and sustained oscillations of emer-
ging infectious diseases due to the psychological impact
from reported numbers of infectious and hospitalized
individuals. Liu & Cui [3] analysed a compartment model
that described the spread and control of an infectious
disease under the influence of media coverage. Li & Cui
[17] incorporated constant and pulse vaccination in SIS
epidemic models with media coverage. Cui et al., [18]
showed that when the media impact is sufficiently strong,
their model – with incidence rate being of the exponen-
tial form capturing the alertness to the disease of each
susceptible individual in the population – exhibits multi-
ple positive equilibria (also see [2]) which poses a chal-
lenge to the prediction and control of the outbreaks of
infectious diseases.
The aim of this study is to investigate the impact of

media coverage on the spread and control of an influenza
strain when a vaccine is available, and where the media

reporting of both disease dynamics and vaccination is
high. Vaccination is one of the most effective tools for
reducing the burden of infectious diseases [19]. However,
despite their public-health benefit, vaccination programs
face obstacles. Individuals often refuse or avoid vaccina-
tions they perceive to be risky. Recently, rumours that
the polio vaccine could cause sterility and spread HIV
have hampered polio eradication in Nigeria [20], while
misplaced fears of autism in the developed world have
stoked vaccination fears [21]. Reporting the number of
individuals who vaccinate may have a positive effect on
the disease transmission by increasing the vaccination
rate.
Conversely, behavioural interventions can also have an

enormous effect on the course of a disease [22,23] Our
model considers the same contact rate after a media alert,
as proposed by Liu & Cui [3], but there are fundamental
differences in both models. They consider the classical SIR
type model, while vaccination is included in ours to reflect
transmission dynamics of human influenza.

Model framework
We divide the population (N) into four sub-populations,
according to their disease status: susceptible (S), vaccinated
(V ), infected (I), and recovered (R). Our model monitors
the dynamics of influenza based on a single strain without
effective cross-immunity against the strain. The susceptible
population is increased by recruitment of individuals
(either by birth or immigration), and by the loss of immu-
nity, acquired through previous vaccination or natural
infection. This population is reduced through vaccination
(moving to class V ), infection (moving to class I) and by
natural death or emigration. The population of vaccinated
individuals is increased by vaccination of susceptible indivi-
duals. Since the vaccine does not confer immunity to all
vaccine recipients, vaccinated individuals may become
infected, but at a lower rate than unvaccinated. The vacci-
nated class is thus diminished by this infection (moving to
class I) by waning of vaccine-based immunity (moving to
class S) and by natural death. The population of infected
individuals is increased by infection of susceptibles, includ-
ing those who remain susceptible despite being vaccinated.
It is diminished by natural death, death due to disease and
by recovery from the disease (moving to class R). The
recovered class is increased by individuals recovering from
their infection and is decreased as individuals succumb to
natural death. Media coverage is introduced into the model
via a saturated incidence function.
A schematic model flowchart is depicted in Figure 1.

Model equations
The transmission model with media coverage is given by
the following deterministic system of nonlinear ordinary
differential equations:
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where Λ is the rate at which individuals are recruited
into the population (recruitment of infectives is ignored
for now); θ is the rate at which susceptible individuals
receive the vaccine; µ is the the rate at which people leave
the population, through natural death or emigration. We

assume this rate to be the same for all sub-populations. b1
is the rate at which susceptibles get infected; ω is the rate
at which vaccine-based immunity wanes; g is the vaccine
efficacy; a is the death rate due to the infection; and l is

the recovery rate from infection. The terms b2
I

m II +
and b3

I

m II +
measure the effect of reduction of the con-

tact rate when infectious and vaccinated individuals are
reported in the media [2,3,18]. The half-saturation con-
stant mI > 0 reflects the impact of media coverage on the

contact transmission. The function g I
I

m II

( ) =
+

is a

continuous bounded function which takes into account
disease saturation or psychological effects [24]. We note
that recovered individuals cannot be vaccinated. Also, a
vaccinated individual who gets infected and then recovers
will return to the susceptible class with no vaccine protec-
tion. This is true even if ω is quite small but s and l are
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Figure 1 The model Schematic model flow diagram
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large. For example, if vaccination lasts three years, but
recovery and loss of immunity takes 6 months, then we
are assuming this person is subsequently unvaccinated.
In the Michaelis-Menten functional response, the rate

at which information is spread by the media rises as
infectives increase, but eventually levels off at a plateau
(or asymptote) at which the information (rate) remains
constant (i.e. it has reached a maximum number of indi-
viduals due to information saturation) regardless of the
increase in infections. Such dynamics can easily be
observed in the spread of rumours, gossip and jokes
(also known as randomized broadcast) [25,26]. This con-
stant coverage is extended by examining more complex
effects which involve more than just reducing contacts
down the line. The news in particular is extremely fickle
so that what is news one day may be forgotten about
next week; including the media effects in some more
sophisticated way such as by an impulsive pulsing is
also investigated. The limited power of the infection due
to contact is accounted for by the saturation incidence.
The first available information is the reported number
of infected individuals when the disease is emerging. We
assume that media coverage can slow but not prevent
disease spread, so b1 ≥ b2 and b1 ≥ b3.
The above model is closely related to those in [27,28]

to analyze the transmission dynamics of human influ-
enza, but there are some differences. In [27], the authors
consider the inflow of infective immigrants, while in [28]
the model includes treatment. Neither of these are con-
sidered here. Our model is clearly a crude reflection of
the complicated nonlinear phenomena of the transmis-
sion dynamics, and it does not incorporate the self-con-
trol property due to the change of avoidance patterns of
individuals at different stages of the infectious process
[2]. News coverage may have a significant impact on
avoidance behaviours at both individual and society
levels, which may reduce the effective contact between
susceptible and infectious individuals; we include this
via a saturation incidence functional response.
Since the model monitors human populations, all the

variables and parameters of the model are nonnegative.
Based on biological considerations the system of equa-
tions (1)-(4) will be studied in the following region,

Ω = ∈ +{( , , , ) }S I R V 4

which is positively invariant and attracting (thus, the
model is mathematically and epidemiologically well-
posed); it is therefore sufficient to consider solutions
in Ω. Existence, uniqueness and continuation results
for model system (1)-(4) hold in this region and all
solutions of this system starting in Ω remain in Ω for
all t ≥ 0.

Stability of the equilibrium states
The disease-free equilibrium of the system is given by
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where h1(I) = m1 + I, h2(I) = (θ + µ + b1I)h1(I) – b2I2,
h3(I) = (θ + ω + (1 – g)b1I)h1(I) – b3(1 – g)I2. Substitut-
ing the above into the second equation at equilibrium
will yield the expression for Î after some rearrangement.
For illustration, suppose θ = b2 = b3 = 0. Then the
endemic equilibrium satisfies
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The basic reproductive ratio, Rv, is defined as the
expected number of secondary infections caused by an
infective individual upon entering a totally susceptible
population [29-31]. This quantity is not only important in
describing the infectious power of the disease, but can also
can supply information for controlling the spread of the
disease [32]. The linear stability of Ev0 is governed by the
basic reproductive ratio Rv. Using the next-generation
method [31], we have
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The basic reproductive ratio is the spectral radius
r(FV–1) which is
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Local stability of the disease-free equilibrium
Lemma 1The disease-free equilibrium Ev0 is locally
asymptotically stable if Rv < 1, and unstable if Rv > 1.
Proof. The Jacobian of the system evaluated at Ev0 is

given by
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For local stability of the disease-free equilibrium, we
require that all the eigenvalues be negative. Three of the
eigenvalues satisfy this condition while ς2 < 0 implies
that Rv < 1 and, consequently, all the eigenvalues of the
Jacobian matrix above have negative real part. Thus, the
disease-free equilibrium is locally asymptotically stable.

Global stability of the disease-free equilibrium
We adopt the method of Castillo-Chavez et al,[33] and
we rewrite the set of model equations in the form
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with G(XG,0) = 0. XG Î ℝ3 denotes the number of
uninfected classes and ZG Î ℝ denotes the number of
infected classes. U XG G0 0= ( , )* denotes the disease-
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For the set of equations

in (1)-(4), we set XG = (S, V, R) and ZG = (I). The con-
ditions (H1) and (H2) below must be met for global
stability.
(H1) For

dX

dt
F X XG

G G= ( , ), *0 is globally asymptoti-
cally stable.
(H2) G(XG, ZG) = AGZG – Ĝ(XG, ZG), Ĝ(XG, ZG) ≥ 0

for (XG, ZG) Î Ω where A D XG ZG G= ( , )* 0 is an M-matrix
(the off-diagonal elements of A are nonnegative) and Ω

is the region where the model makes biological sense.
If the above two conditions are satisfied, then the fol-

lowing theorem holds.
Theorem 2 (Castillo-Chavez et al,[33]): The fixed

pointU XG G0 0= ( , )* is a globally stable equilibrium of
(2.28) provided that Rv < 1 and that assumptions (H1)
and (H2) are satisfied.
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Therefore, Ev0 is globally asymptotically stable (GAS)
since Ĝ(XG,ZG) > 0. The GAS of Ev0 excludes any possi-
bility of the phenomenon of backward bifurcation. We
note that the GAS of the DFE Ev0 when s = 0 is
straightforward.

The optimal control model
Our objective in this section is to extend the initial
model to include two intervention methods, called con-
trols, represented as functions of time and assigned rea-
sonable upper and lower bounds, each representing a
possible method of influenza intervention. Using optimal
control theory and numerical simulations, we determine
the benefit of vaccination and media coverage when the
latter has positive or negative effect on the former.
We will integrate the essential components into one

SIVR-type model to accommodate the dynamics of an
influenza outbreak determined by population-specific para-
meters such as the effect of contact reduction when infec-
tious and vaccinated individuals are reported in the media.
Let uv and um be the control variables for vaccination

and media coverage respectively. Thus, model (1)-(4)
now reads

dS

dt
V u S

I

u m I
SI R

v

m I

= + − − +

− −
− +

⎛

⎝
⎜

⎞

⎠
⎟ +

Λ w q m

b b s

(( ) )

( )

1

11 2

(6)

Tchuenche et al. BMC Public Health 2011, 11(Suppl 1):S5
http://www.biomedcentral.com/1471-2458/11/S1/S5

Page 5 of 16



dI

dt

I

u m I
SI

I

u m I
V

m I

m I

= −
− +

⎛

⎝
⎜

⎞

⎠
⎟

+ −
− +

⎛

⎝
⎜

⎞

⎠
⎟ −

b b

b b g

1 2

1 3

1

1
1

( )

( )
( ) II I− + +( )a m l

(7)

dV

dt
u S V

I

u m I
VI

v

m I

= − − +

− −
− +

⎛

⎝
⎜

⎞

⎠
⎟ −

( ) ( )

( )
( )

1

1
11 3

q m w

b b g
(8)

dR

dt
I R= − +l m s( ) . (9)

A balance of multiple intervention methods can differ
between populations. A successful mitigation scheme is
one which reduces influenza-related deaths with mini-
mal cost. A control scheme is assumed to be optimal if
it maximizes the objective functional

J u t u t

S t V t B I t B u t u t dt

v m

v m
t

tf

( ( ), ( ))

[ ( ) ( ) ( ) ( ( ) ( ))] .

=

+ − − +1 2
2 2

0∫∫
(10)

The first two terms represent the benefit of the sus-
ceptible and vaccinated populations. The parameters B1

and B2 represent the weight constraints for the infected
population and the control, respectively. They can also
represent balancing coefficients transforming the inte-
gral into dollars expended over a finite time period of T
days [34]. The goal is to maximize the populations of
susceptible and vaccinated individuals, minimize the
population of infectives, maximize the benefits of media
coverage and vaccination, while minimizing the systemic
costs of both media coverage and vaccination. The value
uv(t) = um(t) = 1 represents the maximal control due to
vaccination and media coverage, respectively. The terms

B u tv2
2( ) and B u tm2

2 ( ) represent the maximal cost of
education, implementation and campaigns on both vac-
cination and media coverage. S(t) and V(t) account for
the fitness of the susceptible and the vaccinated groups
as a result of a reduction in the rate at which the vac-
cine wanes, and vaccination and treatment efforts are
implemented [35]. We thus seek optimal controls u tv

*( )
and u tm

* ( ) such that

J u u t J u u u u Uv m v m v m( , ( ) max[ ( , ) |( , ) ],* * = ∈

where U = {(uv, um)|uv, um measurable, 0 ≤ a11 ≤ uv ≤
b11 ≤ 1, 0 ≤ a22 ≤ um ≤ b22 ≤ 1, t Î [0, tf]} is the control
set, with t Î [t0, tf]. The basic framework of this pro-
blem is to characterize the optimal control.

Existence of an optimal control
The existence of an optimal control can be obtained by
using a result by Joshi [36] and Fister et al.[37].
Theorem 3Consider the control problem with the sys-

tem of Equations (4.1)-(4.4). There exists an optimal con-
trol( )*uv such that max[ ( , ) |( , ) ] ( , )* *J u u u u u J u uv m v m v m∈ =
Proof. To prove this theorem on the existence of an

optimal control, we use a result from Fleming and
Rishel [38] (Theorem 4.1 pp. 68-69), where the follow-
ing properties must be satisfied.
1. The set of controls and corresponding state vari-

ables is nonempty.
2. The control set U is closed and convex.
3. The right-hand side of the state system is bounded

above by a linear function in the state and control.
4. The integrand of the functional is concave on U

and is bounded above by c2 – c1(|uv|
k + |um|

k), where c1,
c2 > 0 and k > 1.
An existence result in Lukes [39] (Theorem 9.2.1) for

the system of equations (6)-(9) for bounded coeffi-
cients is used to give the first condition. The control
set is closed and convex by definition. The right-hand
side of the state system (Equations (4.1)-(4.4)) satisfies
Condition 3 since the state solutions are a priori
bounded. The integrand in the objective functional,
S t V t B I t B u t u tv m( ) ( ) ( ) ( ( ) ( ))+ − − +1 2

2 2 , is concave on
U. Furthermore, c1, c2 > 0 and k > 1, so
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Therefore, the optimal control exists, since the left-
hand side of (11) is bounded; consequently, the states
are bounded.
Since there exists an optimal control for maximizing

the functional (10) subject to equations (6)-(9), we use
Pontryagin’s Maximum Principle to derive the necessary
conditions for this optimal control. Pontryagin’s Maxi-
mum Principle introduces adjoint functions that allow
us to attach our state system (of differential equations),
to our objective functional. After first showing existence
of optimal controls, this principle can be used to obtain
the differential equations for the adjoint variables, corre-
sponding boundary conditions and the characterization
of an optimal control uv

* and um
* . This characterization

gives a representation of an optimal control in terms of
the state and adjoint functions. Also, this principle con-
verts the problem of minimizing the objective functional
subject to the state system into minimizing either the
Lagrangian or the Hamiltonian with respect to the con-
trols (bounded measurable functions) at each time t[40].
The Lagrangian is defined as
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where w11(t) ≥ 0, w12(t) ≥ 0 are penalty multipliers
satisfying w11(t)(a11 – uv(t)) + w12(t)(uv(t) – b11) at the
optimal uv

* , and w21(t) ≥ 0, w22(t) ≥ 0 are penalty multi-
pliers satisfying w21(t)(a22 – um(t)) + w22(t)(um(t) – b22)
at the optimal um

* .
Given optimal controls uv

* and um
* , and solutions of the

corresponding state system (6)-(9),there exist adjoint
variables li, for i = 1, 2, 3, 4 satisfying the following
equations
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with transversality conditions li[tf] = 0, for i = 1, 2, 3,
4. To determine the interior maximum of our Lagran-
gian, we take the partial derivatives of L with respect to
uv and um, respectively, and set it to zero. Thus,
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To determine an explicit expression for our controls
um

* , um
* (without w11, w12, w21, w22), a standard

optimality technique is utilized. The following cases are
considered to determine a specific characterization of
the optimal control.
Case 1: Optimality of uv

*

1. On the set { | ( ) },*t a u t b w wv11 11 11 12 0< < = = .
Hence, the optimal control is
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The optimal system
The optimality system consists of the state system
coupled with the adjoint system, with the initial condi-
tions, the transversality conditions and the characteriza-
tion of the optimal control:
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where u tv
*( ) and u tm

* ( ) are given by expressions (12)
and (13), respectively, with S(0) = S0, I(0) = I0, V(0) =
V0, R(0) = R0 and li[tf] = 0 for i = 1,··· ,4. Due to the a
priori boundedness of the state and adjoint functions
and the resulting Lipschitz structure of the ODEs, we

obtain the uniqueness of the optimal control for small
[tf] [36]. The uniqueness of the optimal control follows
from the uniqueness of the optimality system.
The state system of differential equations and the

adjoint system of differential equations together with
the control characterization above form the optimality
system solved numerically and depicted in Figures 2, 3,
4, 5.

The model with pulse vaccination
The general model with pulse vaccination is given as
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for t ≠ tk, where tk is the time of the kth vaccination.
We may have tk+1 – tk either constant or not, as we
choose. The impulsive effect is given by
ΔS = –θS
ΔV = θS
when t = tk. Here, Δ ≡ −+ −y y t y tk k( ) ( ) is the change in

state at the impulse time.
In this model, vaccination occurs at fixed times, not

continuously. This is closer to reality, since vaccination
centres are only open at certain times, when people may
get vaccinated in waves. Similarly, media stories tend to
clump together, so that a big news story occurs on one
day, which may trigger a short period of intense vacci-
nation. We shall use a simplified version of this model
to illustrate the possibility that media may have an
adverse effect.

Adverse effects
Consider the following scenario. At the onset of the out-
break, the media - and hence the general population - is
unaware of the disease and thus nobody gets the vac-
cine, allowing the disease to spread in its initial stages.
At some point, there is a critical number of infected
individuals, whereupon people are sufficiently aware of
the infection to change their behaviour. We suppose
that, initially, new infected people arrive at fixed times.
We further assume that vaccinated people mix more

than susceptibles. In this case, people who are vacci-
nated feel confident enough to mix with the infected,
even though they may still have the possibility to con-
tract the virus. This might be the case for health-care
workers, for instance, who get vaccinated and then have
to tend to the sick.

Tchuenche et al. BMC Public Health 2011, 11(Suppl 1):S5
http://www.biomedcentral.com/1471-2458/11/S1/S5

Page 8 of 16



Mathematically, we have a threshold for the critical
number of infectives, Icrit.
For I <Icrit, this model would look like
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For I >Icrit, the model becomes
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with b4 – b6 ≥ 0.
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Figure 2 Optimality effect when the weight constraint for the infected population varies and media has a beneficial effect on the
vaccine. Graphs of the optimality system when media coverage has a beneficial effect on the vaccination rate and when the weight
constraint for the infected population varies. (a) Infected individuals. (b) Vaccinated individuals. Initial conditions: S(0) = 20.0, I(0) = 25.0, V(0)
= 50.0, R(0) = 40.0. The value of the weights used are (i) B1 = 0.0025 corresponds to variables with subscript 1 (++), (ii) B1 = 25.0
corresponds to variables with subscript 2 (xx), (iii) B1 = 250000.0 corresponds to variables with subscript 3 (**). The value B2 = 0.0025 is kept
constant in all three cases.
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Figure 3 Optimality effect when the weight constraint for the control varies and media has a beneficial effect on the vaccine. Graphs
of the optimality system when media coverage has a beneficial effect on the vaccination rate and when the weight constraint for the control
varies. (a) Graph of infectives, (b) Graph of vaccinated individuals. Initial conditions: S(0) = 20.0, I(0) = 25.0, V(0) = 50.0, R(0) = 40.0. The value of
the weights used are (i) B2 = 25.0 corresponds to variables with subscript 1 (++), (ii) B2 = 2500.0 corresponds to variables with subscript 2 (xx),
(iii) B2 = 250000.0 corresponds to variables with subscript 3 (**). The value B1 = 0.0025 is kept constant in all three cases.
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However, to illustrate the adverse affect, we shall sim-
plify the model even further. For a short timescale, we
can assume recovery is permanent, so s = 0. Thus, we
can ignore the R equation.
For I <Icrit, we assume that there is no mixing, but

rather that new infectives arrive impulsively into the sys-
tem at fixed times tk and in numbers Ii, where Ii ≪ Icrit.
(If the new infectives arrive at irregular times, then the
broad results will be unchanged.)
For I >Icrit, fear of the disease keeps susceptibles from

mixing with the infected, but the vaccinated will.
Thus b4 = b6 = 0. Since Ii ≪ Icrit, we can assume that,

for I >Icrit, the effects of new infectives are negligible.

The model then becomes

dS

dt
V S t t k= + − ≠Λ w m  (14)

dI

dt
I t t k= − + + ≠( )a m l  (15)

dV

dt
V t t k= − + ≠( )m w (16)

Δ = =I I t ti
k (17)
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Figure 4 Optimality effect when the weight constraint for the infected population varies and media has an adverse effect on the
vaccine. Graphical representation of the optimality system when media coverage has an adverse effect on the vaccination rate and when the
weight constraint for the infected population varies. (a) Graph of infectives. (b) Graph of vaccinated individuals. Initial conditions: S(0) = 20.0, I(0)
= 25.0, V(0) = 50.0, R(0) = 40.0. The value of the weights used are (i) B1 = 0.0025 corresponds to variables with subscript 1 (++), (ii) B1 = 25.0
corresponds to variables with subscript 2 (xx), (iii) B1 = 250000.0 corresponds to variables with subscript 3 (**). The value B2 = 0.0025 is kept
constant in all three cases.
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Figure 5 Optimality effect when the weight constraint for the control varies and media has an adverse effect on the vaccine. Graphs
of the optimality system when media coverage has an adverse effect on the vaccination rate and when the weight constraint for the control
population varies. (a) Graph of infectives. (b) Graph of vaccinated individuals. Initial conditions: S(0) = 20.0, I(0) = 25.0, V(0) = 50.0, R(0) = 40.0. The
value of the weights used are (i) B2 = 25.0 corresponds to variables with subscript 1 (++), (ii) B2 = 2500.0 corresponds to variables with subscript
2 (xx), (iii) B2 = 250000.0 corresponds to variables with subscript 3 (**). The value B1 = 0.0025 is kept constant in all three cases.
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for I <Icrit and

dS

dt
V S= + − +Λ w q m( ) (18)

dI

dt
VI I= − − + +b g a m l5 1( ) ( ) (19)

dV

dt
S V VI= − + − −q m w b g( ) ( )5 1 (20)

for I >Icrit.
Thus, the effects of the media are to trigger a vacci-

nating panic whenever the number of infectives is
large enough. We kept the model with impulse vacci-
nation as simple as possible since even this simplified
version shows that media reports could have an
adverse effect.
Suppose new infectives appear regularly, so that tk+1 –

tk = τ. (If not, the analysis generalizes quite easily.) For
tk <t <tk+1, we have

I t I ek
t( ) ,( )= + − + +a m l

where I I tk k
+ +≡ ( ) is the value immediately after the

kth impulse. Then, since the period is constant, we
have
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Thus, if m+ >Icrit, then eventually the system will
switch from model (14)-(17) to model (18)-(20). The
endemic equilibrium in model (18)-(20) satisfies
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It follows that the endemic equilibrium is stable if Î
>Icrit. Thus, even in an extremely simplified version of
the model, the media may make things significantly
worse than if no media effect were included. We kept
this model deliberately simple, partly for mathematical
tractability and partly to show that the media effects
apply even in this idealised scenario.
Note that, in reality, the fluctuations would apply in

the upper region as well, making the actual value even
larger. In the lower region, we ignored interaction

between susceptibles and infectives (ie we assume b4 =
b6 = 0). The effect of including these terms would be to
slow the exponential decay between impulses (or possi-
bly cause it to increase). This would only increase the
effect seen here.
In summary, a small series of outbreaks that would

equilibrate at some maximum level m+ >Icrit will, as a
result of the media, instead equilibrate at a much larger
value I >m+ >Icrit. The driving factor here is if an imper-
fect vaccine causes overconfidence, so that people who
have been vaccinated mix significantly more with infec-
tives than susceptibles do. If this happens (as would be
quite likely; most people who have been vaccinated feel
invulnerable, even if the vaccine is not perfect, largely
thanks to media oversimplifications), then the media
effect is likely to be adverse. A simplified version of the
model with pulse vaccination shows that the media can
make things worse, if the vaccine is imperfect because
the vaccinated mix over-confidently with the infectives.

Numerical simulations
We now return to model (6)-(9) and illustrate some of
the properties discussed in the previous sections. The
parameter values that we use for numerical simulations
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are in Table 1. Initial conditions: S(0) = 200.0, I(0) = 1.0,
V(0) = 10.0, R(0) = 0.0. The parameter θ varies between
0.3 and 0.7 with an average of 0.5 [41]. We consider an
imperfect flu vaccine for which the waning rate is about
0.15. The relationship between b2 and b3 is not very
obvious; consequently, we can either assume equality or
that the former is slightly greater than the latter. Trans-
mission dynamics of infectious diseases with and with-
out media coverage have already been carried out in
previous studies, but these models do not account for
the vaccination coverage. Therefore, we illustrate some
numerical results for the model with optimal control
when media coverage has (i) a beneficial effect (see Fig-
ures 2 and 3) (ii) and adverse effect on the vaccination
rate (see Figures 4 and 5).
The optimality system is solved using an iterative

method with a fourth order Runge-Kutta scheme. Start-
ing with a guess for the adjoint variables, the state equa-
tions are solved forward in time. Then the state values
obtained are used to solve the adjoint equations back-
ward in time; the iterations continue until convergence.
Simulations are carried out to determine how maximiz-
ing media coverage enhances vaccination. The effects of
costs that can be incurred, which include education,
implementation and campaigns on media coverage, are
also studied to evaluate how these costs can affect the
transmission of human influenza. We increase the value
of B2 (the cost weight) in Figure 2 to assess how the
populations of susceptibles, infectives, vaccinated and
recovered individuals are altered. In Figure 3, we investi-
gate how increasing minimization of infectives through
increasing the weight B1 affects the control of human
influenza transmission. We do the same in Figures 4
and 5, respectively, to see how, if media coverage has an
adverse effect, the various populations behave. In Figure

4, we vary the cost weight, while in Figure 5, we vary
the weight of minimizing infectives.
We note from Figure 2 that, during the initial days,

there is a very sharp drop in the population of infected
individuals, while other populations show increases.
Increasing minimization of infectives, while keeping
costs low, can lead to the disease being controllable.
The slight rise and fall, after the initial 20 days, in the
population of infectives could be attributed to compla-
cency on the part of some individuals (or may be due to
oscillations in the system independent of external fac-
tors). We find that people tend to relax after the initial
shock of the disease threat. However, we note that this
is not for long, and this could be attributed to the fact
that vaccination levels continue to rise, so as people
continue to receive vaccination, infection is controlled.
Thus, if costs are kept minimal, and more people are
able to access media and vaccination, then infection can
be controlled. Both vaccination and media coverage con-
tinue at optimum levels as a result of the low costs and
minimization of infectives.
From Figure 3, as costs are increased, few people have

access to media and vaccination; as a result, low num-
bers get vaccinated against the disease. In the long run,
the infection levels rise. The degree of media coverage
and vaccination also decrease as a result of the exorbi-
tant costs. With the little available media coverage and
the few vaccinated individuals, we find that, due to
information filtration, there is a jump in the vaccination
levels, though these only last briefly; as the degree of
media coverage and vaccination decrease, so do the vac-
cination levels.
From Figure 4, even though costs are kept at minimal

levels, the negative reports concerning vaccination result
in a drastic reduction in the vaccination levels. After
some time, we note a slight increase in the vaccination
levels; however, these numbers remain very low. This
could be due to the fact that, as infection rises, a few
will risk getting vaccinated in the hope of being cured.
Thus, media coverage can have adverse effects if peo-
ple’s perception towards the vaccine is negatively influ-
enced by the media.
In Figure 5, both media coverage and vaccination are

eventually withdrawn. Very low numbers get vaccinated.
It is only when infection escalates that vaccination levels
also increase as some might find it better to try to pre-
vent the infection, despite the negativity towards vacci-
nation in the media. Figure 6 illustrates other potential
adverse effects that media may have, if the effect is to
trigger a vaccinating panic where vaccinated individuals
are not fully protected and mix with infected individuals
but susceptible individuals do not. In this case, the num-
ber of infected individuals may increase sharply as a
result of the media. Figure 7 illustrates the long-term

Table 1 Parameter values

Parameter Symbol Value Units Reference

Recruitment rate Λ 5.0 People day–
1

[3]

Rate at which vaccine
wanes

ω 0.15 day–1 Assumed

Vaccine uptake rate θ 0.3-
0.7

day–1 [41]

Natural death rate µ 0.02 day–1 [3]

Infection rate b1 0.02 people–
1day–1

[3]

Loss of immunity s 0.01 day–1 [3]

Vaccine efficacy g 0.8 (unitless) [3]

Infection death rate a 0.1 day–1 [3]

Recovery rate of Infectives l 0.05 day–1 [3]

Reaction due to media
coverage

mI 10.0 people Assumed

Media coverage model parameters, their interpretations and values
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results of a media-induced vaccination panic. Without
media effects, the result is a low-level infection. When
the media triggers a vaccinating panic, there is a large
outbreak, followed by an endemic level of infected indi-
viduals significantly higher than the level of infected
individuals without the media effects. Note that these
examples assume no post-vaccination mixing of suscep-
tible and infected individuals.
Figure 8 illustrates the cases when post-vaccination

mixing of susceptible and infected individuals is maxi-
mal (b4 = b5, b6 = 0), 50% (b4 = b5, b6 = b4/2) or zero
(b4 = b6 = 0). Thus, if susceptible and infected indivi-
duals mix after a vaccinating panic has occurred, the
effect is an earlier outbreak and a larger number of
infected individuals.

Conclusion
Media simplifications can lead to overconfidence in the
idea of a vaccine as a cure-all. The result is not just a
vaccinating panic and a blow-out epidemic, but a net
increase in the endemic equilibrium. Thus, media cover-
age of an emerging epidemic can fan the flames of fear
and also implicitly reinforce an imperfect solution as the
only answer.
We have formulated and investigated a simple deter-

ministic vaccination model describing the effects of
media coverage on the transmission dynamics of influ-
enza. The media effect due to reporting the number of
infections as well as the number of individuals success-
fully vaccinated is introduced into the compartmental
model via a saturated incidence-type function. The
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impact of costs that can be incurred, which include vac-
cination, education, implementation and campaigns on
media coverage, are also investigated using optimal con-
trol theory applied via the Pontryagin’s maximum prin-
ciple. A simplified version of the model with pulse
vaccination shows that the media can have an adverse
effect if the vaccine is imperfect and the vaccinated mix
over-confidently with the infectives. Numerical simula-
tions are carried out to support the analytical results.
We note, however, that our caricature model is not

complete; a more comprehensive study will require
interdisciplinary research across traditional boundaries
of social, natural, medical sciences and mathematics [2].
Nevertheless, our work provides some insights into the

effects of media reporting on the transmission dynamics
of infectious diseases for which a vaccine exists. The
present study is in no way exhaustive and can be
extended in various ways: for example, to investigate the
case in which there is media coverage but people ignore
it (in which case the vaccination rate is unchanged
despite the control). Thus, the effects of media on an
outbreak of influenza with a partially effective vaccine
may be complicated. While the media may encourage
more people to get vaccinated, they may also trigger a
vaccinating panic or promote overconfidence in the abil-
ity of a vaccine to fully protect against the disease. This
may have potentially disastrous consequences in the
face of a new pandemic.
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