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Abstract

Background: Computer simulation models are used increasingly to support public health research and policy, but
questions about their quality persist. The purpose of this article is to review the principles and methods for
validation of population-based disease simulation models.

Methods: We developed a comprehensive framework for validating population-based chronic disease simulation
models and used this framework in a review of published model validation guidelines. Based on the review, we
formulated a set of recommendations for gathering evidence of model credibility.

Results: Evidence of model credibility derives from examining: 1) the process of model development, 2) the
performance of a model, and 3) the quality of decisions based on the model. Many important issues in model
validation are insufficiently addressed by current guidelines. These issues include a detailed evaluation of different
data sources, graphical representation of models, computer programming, model calibration, between-model
comparisons, sensitivity analysis, and predictive validity. The role of external data in model validation depends on
the purpose of the model (e.g., decision analysis versus prediction). More research is needed on the methods of
comparing the quality of decisions based on different models.

Conclusion: As the role of simulation modeling in population health is increasing and models are becoming more
complex, there is a need for further improvements in model validation methodology and common standards for
evaluating model credibility.

Background
Computer simulation models have been used in health
research and policy since the 1960s [1,2]. In a review of
simulation modeling in population health and health
care delivery prior to 2000, Fone et al identified 182
papers covering a wide range of topics, including hospi-
tal scheduling, communicable diseases, screening, cost
of illness, and economic evaluation [3]. The authors
noted that the quality of published papers was variable
and the value of modeling was difficult to assess. One of
the features distinguishing high quality papers from
lower grade papers was more complete reporting of
model validation [3]. While concerns have been raised

about the role of modeling in guiding health policies
[4,5], the number of published disease simulation mod-
els has grown dramatically in the past decade. This
expansion has been fuelled by the increasing power and
decreasing cost of computing infrastructure combined
with the growing availability of population health data
[5-7].
The methodology of model validation has been dis-

cussed extensively in the literature [3-15]. Sargent [8]
described the general approach to “verification and vali-
dation” of computer simulation models and specific
techniques that can be used for these purposes. Citro
and Hanushek [9] discussed issues specific to the valida-
tion of microsimulation models in social policy and
reviewed a number of validation studies. Morrison [10]
provided a thorough review of the validation of the
DYNACAN model, used to simulate changes in the
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Canada pension plan, and discussed many principles of
model validation in this context. Weinstein et al [4] and
the ISPOR Task Force on Good Research Practices [11]
published guidelines for the development and validation
of decision-analysis models in health policy. Philips et al
reviewed 15 previously published guidelines on the vali-
dation of health technology assessment models and
developed a comprehensive list of questions to be
addressed [12]. The Environmental Protection Agency
in the U.S. issued Guidance for the Development, Eva-
luation and Application of Environmental Models [15].
While the need for model validation has long been

recognized in the literature, different methods and tech-
niques may be needed for different models depending
on the type of the model and the intended application
[4,15]. Feuer et al distinguished between decision-analy-
sis (cost-effectiveness) models and population-based
“surveillance” models [16]. A surveillance model differs
from decision-analysis models in that “rather than repre-
senting a hypothetical cohort, it models the population,
that is, a collection of birth cohorts, over a specified
period of time” [16]. These authors also drew a distinc-
tion between biological and epidemiological models.
Biological models attempt to model the underlying dis-
ease process at the level of organs and tissues whereas
epidemiological models simplify the process by focusing
on the observable characteristics of individuals or
groups [16]. In microsimulation models, the unit of
simulation is the individual.
The purpose of this article is to review the principles

and methods of validation applicable to population-
based disease simulation models. The majority of pub-
lished model validation guidelines were developed in the
context of macro-level, cohort-based models designed as
aids to decision making [11,12]. Population-based mod-
els have a wider range of application, including explana-
tion and prediction of trends in disease frequency and
estimation of unknown parameters through model cali-
bration. We propose a comprehensive framework for
the validation of such models. This framework addresses
several gaps in the published validation guidelines and
allows us to formulate specific recommendations for
conducting model validation studies.
The focus of this review is on epidemiological microsi-

mulation models of non-communicable diseases, rather
than biological models or models that involve interac-
tions between individuals (e.g., infectious disease mod-
els). Most of the examples come from our experience
with the Population Health Model (POHEM) from Sta-
tistics Canada [17,18]. POHEM is a generic longitudinal
microsimulation model of health and disease. The
model simulates representative populations and allows
the comparison of competing health interventions.
Studies using POHEM-based models for breast, colon

and lung cancer in Canada have been published [18-21],
and a model of osteoarthritis has been developed
recently [22].

Model validation framework
In computer modeling, validity has been defined as “the
degree to which a model or simulation is an accurate
representation of the real world from the perspective of
the intended uses of the model or simulation” [23].
However, validity defined in this way is often difficult to
prove. It has been pointed out that model validation
must be conducted continuously and should never be
considered entirely complete [4,8,15]. From a practical
perspective, models gain credibility among potential
users by virtue of being carefully developed and thor-
oughly tested [10]. In assessing model credibility, the
key issue is the amount of evidence, both theoretical
and empirical, in support of the model’s intended use.
Consequently, we consider model validation broadly as
the process of gathering such evidence.
Published guidelines differ in how they define the

scope of model validation and what terms they use for
various components of the validation process. For exam-
ple, Sargent distinguishes between data validity, valida-
tion, model verification, and operational validity [8]. The
ISPOR guidelines consider model structure, data, and
validation as criteria for model quality, with validation
divided into internal, between-model and external/pre-
dictive validation [11]. Weinstein et al [4] used the term
“verification” to mean determining that the model’s
inputs and outputs are consistent with actual data and
accepted theories. Model corroboration in their frame-
work involves comparisons between different models,
whereas validation is equivalent to predictive validity
testing. They use the term evaluation to encompass all
these concepts [4]. A variety of other terms have been
used in the validation literature [9-15].
The terminology of model validation can be simplified

by recognizing that the evidence supporting a given use
of a model can be obtained by examining: 1) the process
of model development; 2) the performance of the model;
and 3) the quality of decisions based on the model. All
aspects of model development must be examined. These
aspects include the underlying theories and assumptions,
the definitions of key concepts, the content, the struc-
ture, the parameters, and the implementation of the
model in software. Similarly, model performance must
be examined comprehensively, starting with subjective
plausibility (face validity), and including internal consis-
tency, parameter sensitivity, between-model comparisons
(model sensitivity), and external comparisons with his-
torical and prospective data. Finally, important insights
regarding model credibility can be obtained by consider-
ing the consequences of decisions based on the model
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(actual model applications). These sources of evidence
are listed below.

1. Evidence from examining model development
process

a. Conceptual model
b. Parameters
c. Computer implementation

2. Evidence from examining model performance
a. Plausibility (face validity)
b. Internal consistency
c. Parameter sensitivity
d. Between-model comparisons
e. Comparisons with external data

3. Evidence from examining the consequences of
model-based decisions

Evidence from examining model development
process
Conceptual model
The development of a disease simulation model usually
starts with a conceptual description of the relationships
between the condition of interest, its causes and its con-
sequences. Sargent discussed the relationship between
model development and model validation [8]. He
defined conceptual model validation as “determining
that the theories and assumptions underlying the con-
ceptual model are correct and the model representation
of the problem entity and the model’s structure, logic,
and mathematical and causal relationships are reason-
able for the intended purpose of the model.” The evi-
dence of conceptual model validity tends to be
qualitative and relies on the opinion of experts in the
relevant fields [8].
Underlying theories
The conceptual description of the model should be
based on an accepted theory of the phenomena under
study [11,12]. For example, POHEM-based disease mod-
els apply concepts from several disciplines, such as
demography, epidemiology, statistics, medicine, and
health economics [17,18]. In contrast, cancer models
developed as part of the CISNET program in the U.S.
use biological theories of tumor growth [24], whereas
the Archimedes diabetes model incorporates physiologi-
cal theories of blood sugar level regulation and other
biological concepts [25,26]. A number of authors have
emphasized the importance of ensuring the validity of
the underlying theories [11,15]. The lack of an adequate
theoretical basis is a serious limitation that may com-
promise the model’s credibility.
Definitions of variables
The conceptual and operational definitions of the vari-
ables in the model should be justified [4,8,11]. The
appropriateness of a disease definition within a model

depends on the disease, the purpose of the model, and
availability of data. For example, the POHEM-based
models of lung and colorectal cancer employ the same
disease definitions as those used by Canadian cancer
registries, which generally include pathological confir-
mation [19-21]. Other population-based models apply
definitions based on clinical diagnosis, hospital discharge
information, self-report, or administrative data
[22,24-28]. Evidence that the definition used is accepta-
ble should be provided and may include a reference to
published and/or generally accepted clinical criteria or
results from validation studies. For example, the authors
of the POHEM osteoarthritis (POHEM-OA) model per-
formed a validation study to assess the sensitivity and
specificity of an OA definition based on physician billing
data against radiographic and clinical diagnosis [22].
Definitions of other variables, such as disease risk fac-
tors or quality or life outcomes, should also be provided
and should be consistent with the definitions used in
the literature. For instance, quality of life outcomes in
the POHEM-OA model are based on a well-established
instrument, the Health Utilities Index [22].
Model content and structure
Epidemiological simulation models usually represent
causal relations between etiological factors and health
conditions and between prognostic factors and health
outcomes [16]. These relationships can be very complex
(web of causation). The task for model developers is to
determine those aspects of the causal web that are
necessary and feasible to simulate. Model assumptions
should be presented clearly, including a description of
the expected strengths and limitations of the model for
a range of potential applications. Determining which
assumptions are most critical often depends on the pur-
pose of the model (e.g., prediction, explanation, decision
analysis) [4,15].
Evidence that the model is sufficiently complete and

that the relationships between the variables are specified
correctly should come from both theory and empirical
data [8,11,15]. Incorrect model specifications may
involve, for example, assuming causality between two
variables that are merely correlated, ignoring a causal
relationship, or assuming an incorrect direction of a
causal effect. If some risk factors, intermediate variables,
or interactions are omitted, explanation should be given
as to why this omission is acceptable and does not inva-
lidate the results. For example, the POHEM-OA model
includes age, sex and BMI as risk factors for OA [22].
Although other factors have been reported in the litera-
ture, they have not been incorporated into the model
because the evidence for their causal association with
OA is inconclusive (e.g., education, physical activity) or
because data on their distribution in the population are
insufficient (e.g., family history, joint injury). Omitting
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the latter variables is unlikely to affect model perfor-
mance since family history is not a modifiable factor
and joint injuries are relatively rare.
The structure of a simulation model is often presented

graphically. However, there is currently no standard for-
mat or generally accepted guideline for the graphical
representation of epidemiological microsimulation mod-
els. Diagrams showing transitions between disease states
typically used to describe macro-level models or data-
flow diagrams common in computer science are not
ideal to represent epidemiological microsimulation mod-
els in which the key consideration is the causal relation-
ships between variables. For such models, diagrams
based on graph theory [29], in which an arrow or arc
linking two variables in the model indicates the assumed
direction of a causal effect, may be more suitable.
Additional complexities arise in models in which dif-

ferent sets of relationships are defined for different sub-
sets of the population. For example, in a model of
breast cancer that simulates the risk factors for the dis-
ease as well as prognostic factors in different stages of
the disease, the effects of prognostic factors apply only
to those with breast cancer (or a specific stage of breast
cancer). To represent such models, it may be helpful to
use multiple diagrams or multilayer computer-based
interactive diagrams [30].

Parameter validation
Model developers are familiar with the popular dictum
“garbage in, garbage out”. Clearly, providing evidence of
parameter validity is important for establishing model
credibility [10]. However, population-based microsimu-
lation models of chronic diseases may include thou-
sands of parameters [10,16,18,22]. For example, the
parameters in POHEM-based models include: age/sex-
specific mortality rates and birth rates in the population;
age/sex-specific prevalence of the risk factors; effects of
demographic variables on the probability of exposure to
each factor; disease incidence by age and sex; causal
relative risks (hazard ratios) for several risk factors with
multiple levels and interaction effects; impact of various
prognostic factors on disease progression and case fatal-
ity; probability of receiving different treatments condi-
tional on patients’ characteristics; the effects of each
treatment on disease progression, complications, quality
of life, and case-fatality; as well as economic parameters,
such as cost of treatments according to disease stage
and demographic variables [19-22]. Because of the num-
ber of parameters involved, it is not possible in such
models to provide detailed and succinct summary of the
evidence of validity for each parameter. The amount
and type of evidence that should be provided will
depend on the type of parameter, its source and method
of estimating the parameter value, available data, and

the importance of the parameter in a given application
of the model.
Evidence of parameter validity should include consid-

erations of possible bias as well as uncertainty in esti-
mating a given parameter. Such evidence generally
comes from examining the process used to derive a
value for the parameter (primary source, method of
derivation), and comparisons with data from other
sources. The main sources of parameter values are:
1) expert opinion, 2) published estimates, 3) analyses of
existing data, 4) collection and analysis of new data, and
5) model calibration. The decision as to which source to
use often depends on data availability. When more than
one source is available, the type of parameter, its likely
impact on model output, quality of the source, and
costs of parameter derivation are key considerations
[8-11].
Parameters obtained from experts
While expert opinion is a legitimate method of obtain-
ing parameters [11], the decision to use experts to esti-
mate a parameter should be justified and the process of
obtaining the parameters should be described. In our
view, such description should include the number of
experts, their area or expertise, what questions were
asked and how the responses were used to identify a
specific parameter value. Ideally, model developers
should apply established methods of soliciting opinions
from experts, such as Delphi or nominal group techni-
ques [11]. The plausibility of the parameter value(s)
must be assessed and deemed acceptable by indepen-
dent experts. If other sources for a given parameter are
available, comparisons should be made and the differ-
ences explained.
Parameters obtained from the literature
Parameters may be obtained from published or unpub-
lished sources (e.g., government reports). Usually, the
best source is a meta-analysis published in a peer-review
journal. If several estimates for a parameter have been
published but a meta-analysis has not been carried out,
model developers may decide to perform their own
meta-analysis or combine information from several
sources in other ways [11,23,31]. The methodology for
such derivation must be justified and explained in a
manner likely to satisfy a scientific peer-review.
The results of meta-analyses are typically conditional

on the estimates reported in individual studies, some of
which may be seriously biased. For example, a review of
survival studies in various cancers found that only 5% of
studies that relied on the popular Cox proportional
hazards (PH) model tested the crucial PH assumption
that the effects of prognostic factors remain constant
over time [32]. Yet, a failure to account for violation
of the PH assumption may lead to biased prognosis
and incorrect conclusions [33]. Therefore, a single
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high-quality study may be a preferred choice in some
situations. For example, in the Coronary Heart Disease
Policy Model, the risk of CHD was based on data from
the Framingham Heart Study [31]. A single high-quality
study may also be used when multiple estimates for a
given parameter are not available. For instance, a
POHEM-based breast cancer model used data from the
Breast Cancer Prevention Trial to assess the benefits of
tamoxifen in the prevention of breast cancer [19].
If high-quality studies (e.g., large randomized trials or

cohort studies published in respected journals) are not
available, other data sources may be used. However,
simply providing a reference to a published source is
generally not sufficient. The quality of the study should
be ascertained and the selection of the source justified.
If an unpublished source is used, evidence of validity
should include a description of the study and an assess-
ment of its quality. A comparison with alternative
sources or data should be made and discrepancies
explained or determined to be acceptable. If alternative
sources are not available, the plausibility of the para-
meter values should be assessed by experts in the field.
Data obtained directly from the literature may not be
sufficient if important details are omitted. For example,
the dose-response relationship is not fully delineated,
subgroup analyses are not reported, not all age groups
are analyzed, or non-significant results are omitted
[12,23]. Model developers may have to apply analytical
techniques such as smoothing, interpolation and extra-
polation to derive the parameters, for example, assuming
a linear or exponential dose-response relationship [15].
Parameters obtained from data analysis
Descriptive parameters in population health models may
be derived directly from an existing database. For exam-
ple, some POHEM-based models use the Canadian
Community Health Survey as the baseline population,
vital statistics as the source of mortality parameters, and
an administrative health database for incidence and
health care utilization rates [19-22]. Validity of the data-
base must be ascertained as the accuracy of the data
varies across different variables and types of parameters.
Evidence of validity may come from previous validation
studies or from new studies conducted specifically to
assess validity against other sources, including other
databases, the literature, as well as new analyses of the
data. In POHEM-OA, for instance, age/sex-specific esti-
mates of OA incidence derived from administrative data
were compared with published estimates of the inci-
dence of radiographic and symptomatic OA of different
joints and self-reported arthritis incidence from popula-
tion surveys [22].
Identified parameter values may be used directly

or may undergo some modification or adjustment
prior to incorporation into a simulation model.

Morrison describes examples of adjustments and correc-
tions applied to the parameters derived from a database
[10]. For example, a public use database may include
age as a grouped variable while the model requires exact
ages. The exact age would thus be imputed based on the
distribution of age in each category observed in a differ-
ent database [10].
If parameters are derived through an analysis of exist-

ing or newly collected data, evidence of validity should
be equivalent to that required for a publication in a
scientific peer-review journal. In some cases, the results
of such analyses are in fact published [34]. However,
microsimulation models may require numerous and
extensive analyses with hundreds of output tables. Even
though appendices with additional data are increasingly
posted online, publication of all analyses and model
parameters in peer-review journals is generally not feasi-
ble. Also, the type of analysis required for a simulation
model may not be suitable for publication in a medical
journal. For example, the POHEM-OA model required
an estimate of the overall effect of BMI on OA of any
joint. Yet, for a clinical audience, joint-specific estimates
would have been more interesting and more likely to be
published.
Even if the results are not intended to be published,

model developers must conduct data analyses that can
stand up to scrutiny equivalent to that required for pub-
lication in peer-review journals. This includes not only
proper statistical methods of analysis but also considera-
tions of selection and measurement bias in the data, as
well as confounding and presence of intermediate vari-
ables when assessing causal associations. In addition, it
is often necessary to consider dose-response relation-
ships, time-dependent effects, and interactions. The
results should be compared with estimates from other
sources and expert opinion.
Finally, it is critical that the estimates be generalizable

to the population being modeled. If parameters are esti-
mated from studies in non-representative populations,
evidence to support generalizability should be provided.
For example, the effect of surgical treatment on health
outcomes in the POHEM-OA model was obtained from
a cohort study in a single treatment centre because the
study included multiple measurements of health utilities
(key outcome in the model) prior to and following sur-
gery. Although this was not a general population sam-
ple, the approach could be justified by the fact that this
type of surgery has been highly effective in multiple stu-
dies and across different samples [35].
Parameters obtained through model calibration
Calibration of the model involves the estimation of
unknown model parameters, so that the aggregate out-
put from the model is consistent with external (target)
data [15,16,36]. For example, in POHEM-OA,
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age/sex-specific incidence rates of OA in the reference
population (those with normal BMI) have been cali-
brated to administrative data [22]. Calibration some-
times involves simultaneous searches for multiple
parameters using multiple targets. A review of calibra-
tion methods in cancer models recently published by
Stout et al included a 16-question checklist for reporting
calibration studies. The following elements should be
reported: target data, search algorithm, goodness-of-fit
metrics, acceptance criteria, and stopping rule [36]. It
should be pointed out that model calibration methodol-
ogy is evolving and there is no consensus at this time
on how calibration should be carried out [36,37]. Never-
theless, a detailed description of the calibration proce-
dures would enhance model credibility. Furthermore,
plausibility of the parameters derived through calibra-
tion should be evaluated by experts and their values
compared with external data, whenever such data are
available.

Computer implementation
Selection of model type
Published validation guidelines do not specify how the
appropriateness of model type should be determined.
Similar modeling objectives can often be achieved with
different types of simulation models [15]. For example, a
CISNET simulation study of breast cancer mortality was
performed with seven different models [38]. Providing a
justification for the selected model type improves model
credibility. Specifically, a stochastic rather than a deter-
ministic model may be appropriate if modeling the full
distribution of an outcome is important [39]. If a micro-
simulation approach is used, the need for additional
complexity compared with a simpler macro-level model
should be explained. Similarly, within the microsimula-
tion approach, there should be a justification for choos-
ing between discrete and continuous time models, as
well as between “agent-based” models in which the indi-
viduals interact with each other and models that do not
allow for such between-subject interactions. For exam-
ple, unlike most infectious disease models, POHEM
does not model contacts between persons because such
interactions are irrelevant for describing the frequency,
treatment and outcomes of non-communicable condi-
tions. Whether or not the type of model is appropriate
for a given application should be determined by inde-
pendent experts.
Simulation software
Simulation models can be developed using a general-
purpose programming language such as C++ or Java,
more specialized languages such as MATLAB [40] or R
[41], or software toolkits specifically designed to facili-
tate the construction of simulation models by providing
graphical interfaces to other programming languages.

For example, the source code for POHEM is written in
Modgen, a C++-based simulation modeling language
developed at Statistics Canada [42]. Wikipedia lists 67
agent-based modeling toolkits [43] and 22 discrete event
simulation toolkits [44]. Some of the most commonly
used agent-based modeling software has been reviewed
by Railsback et al [45].
However, information on the relative merits of differ-

ent software for microsimulation modeling is limited.
More specifically, current model validation guidelines do
not address the issue of selecting the most appropriate
simulation platform. Advantages of using specialized
simulation software for model development include
greater model transparency and less opportunity for
mistakes, thus improving model credibility. However,
disease simulation models may be written in a general-
purpose language because existing toolkits are not flex-
ible enough, the specialized software may not execute
efficiently, or the programmers are not familiar with the
available simulation software. Model developers should
provide information on the programming language and
software used, and the reason for their choice.
Computer program
Implementation of a model in software involves many
programming decisions. Even within a given type of
model and simulation software, some development
approaches are more appropriate (e.g., more efficient,
less prone to errors) than others [8,46]. As part of
model validation, programming experts not involved
directly in model development should evaluate the key
decisions and approaches used.
Published guidelines underscore the need for a careful

examination (verification) of the computer program
[8,10-12]. Debugging of the program involves various
tests that can be performed to identify coding errors
and other problems with the implementation of the
model. Static techniques require the programmer to
examine the structure of the program whereas dynamic
techniques involve running the program or its compo-
nents and comparing the results with an expected pat-
tern of results [8]. More advanced methods of model
specification and verification, known as formal methods,
are based on theoretical concepts in computer science
[46]. While relatively complex and expensive to imple-
ment, such methods are useful for models in which the
costs of a mistake are extremely high. Some of the ques-
tions that need to be asked when validating the compu-
ter program are listed by Morrison [10]. Debugging is
usually performed by the model development team. Eva-
luation of the source code by external experts is rare
because of intellectual property concerns [11,15]. This
practice, however, adds to the impression of simulation
models as “black boxes”. Documenting the results of
program debugging tests and making the mathematical
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equations underlying the model open to scrutiny by
external experts would improve model transparency and
should become a standard practice [11].

Evidence from examining model performance
If we were certain that the conceptual model, its para-
meters and computer implementation were all free of
errors, there would be no need to examine model out-
put as part of model validation. Unfortunately, no
model is perfect. By definition, all models involve
assumptions and simplifications that lead to discrepan-
cies between the model output and the real world.
Examining the output is thus an integral part of model
validation. Sargent refers to this aspect of validation as
examining “operational validity” of the model and
defines it as “determining that the model’s output beha-
viour has the accuracy required for the model’s intended
purpose over the domain of the model’s intended
applicability” [8]. This aspect of validation is also
referred to as internal and external consistency [12],
model verification [7], and external and predictive valid-
ity testing [11].

Plausibility
The first step in examining model performance is
usually the assessment of output plausibility (face
validity), which consists in asking subject-matter
experts if the model output appears reasonable and
makes intuitive sense [7,8]. This involves comparisons
of model output with expectations based on general
knowledge and understanding of the modeled phenom-
ena. Plausibility should be evaluated for a wide range
of input conditions and output variables over varying
time horizons [8].
Although the criteria for model plausibility are sub-

jective and arbitrary, this is an important step in evalu-
ating model performance and may point to potentially
serious problems with the model [11,12]. Some results
may be clearly implausible even to non-experts; how-
ever, plausibility is best assessed by persons with
expert knowledge in the area of model application. For
example, estimates of disease prevalence may appear
unreasonably high or low, a curve describing a secular
trend may have an improbable shape, or the impact of
changing some input parameters may be opposite to
what would be expected. In a preliminary version of
POHEM-OA, the authors observed an implausibly
rapid increase in OA prevalence in the first 20 years of
the projected trend. Further analyses revealed that this
problem was caused by a discrepancy between baseline
prevalence and incidence of the disease estimated from
administrative data. Subsequently, a better estimate of
baseline prevalence was derived using simulation mod-
eling [22].

Internal consistency
Internal consistency is assessed by considering func-
tional and logical relationships between different out-
put variables [5,16]. The relationships between trends
in disease incidence, prevalence, mortality and other
health outcomes generated by the model should be
consistent with theory. For example, assuming no
change in case-fatality over time, one may be able to
estimate the expected change in mortality associated
with a given change in disease incidence. In POHEM-
OA, which assumes no effect of OA on the risk of
death, the authors assessed the relationship between
the incidence, prevalence and duration of disease [22].
A lack of internal consistency usually suggests errors
in the formal logic of the model or its implementation
in software [12].

Parameter sensitivity analysis
The definition of sensitivity analysis varies between
authors. In most published guidelines, sensitivity analysis
is regarded as a method of assessing the impact of para-
meter uncertainty on model output [10,13,14]. Citro and
Hanushek define sensitivity analysis more broadly as “a
technique that measures the effect on model output of
alternative choices about model structure” [11]. Further-
more, some authors differentiate between analyses
aimed at estimating a confidence interval around the
output (uncertainty analysis) and those aimed at appor-
tioning uncertainty in the output to different sources
(sensitivity analysis) [15,47]. In this article, we use the
term parameter sensitivity when discussing sensitivity
analysis as a method of quantifying the impact of para-
meter uncertainty. Assessing the impact of uncertainty
about the conceptual model (structural uncertainty) or
computer implementation is discussed under “between-
model comparisons”.
Several methods of sensitivity analysis have been

described [15,47]. The impact of parameter uncertainty
is usually evaluated by running the model repeatedly
while varying the values of the parameters. Parameter
values can be varied systematically, either one at a time
or in combination (deterministic methods), or sampled
randomly from a univariate or, in the case of correlated
parameters, joint multivariate probability distribution
(probabilistic methods) [15,47]. In stochastic models, it
is also important to assess the amount of stochastic
variability (Monte Carlo error) through multiple runs of
the model. A high amount of variability may cause the
model’s results to be questionable or seriously limit
their practical utility. Stochastic error can be reduced by
increasing the size of the simulated population [48], an
option that becomes increasingly viable with continuing
progress in computing resources.
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Sensitivity analysis is an important component of
model validation. According to the ISPOR guidelines, all
modeling studies should include extensive sensitivity
analyses with respect to key parameters [11]. The
ISPOR guidelines consider either deterministic or prob-
abilistic sensitivity analysis as appropriate. Philips et al
recommend probabilistic analysis as the preferable
method of handling parameter uncertainty [12]. Cronin
et al provided a detailed discussion of probabilistic sen-
sitivity analysis in the context of disease microsimulation
models [49].
The large number of parameters in many microsimu-

lation models makes sensitivity analysis a challenging
task. As previously mentioned, some POHEM-based
models may include thousands of parameters. For such
models, expert opinion and preliminary screening
tools, including graphical methods, can be used to
select the most influential parameters [15,50]. More
intensive sensitivity analysis methods are then applied
to the smaller set of parameters. Among the screening
tools, the most common approach is one-at-a-time
analysis [51]. Useful graphical methods include tornado
graphs, radar graphs, matrix and scatter plots and cob-
web plots [52]. When certain parameters in the model
are estimated through calibration, modifying the values
of other parameters may require a recalibration of the
entire model. In this case, the analysis will permit
assessing the sensitivity of model output to various
combinations of parameters that produce results con-
sistent with the calibration data.

Between-model comparisons
There is agreement in the literature that comparing the
results of different models provides important evidence
of validity and increases model credibility [7-13]. The
ISPOR guidelines refer to this activity as model corro-
boration (or convergent validity) and state that “model-
lers should cooperate in comparing results and
articulating the reasons for discrepancies” [11]. They
also emphasize that alternative models should be devel-
oped independently of each other.
Alternative model structures and assumptions are

increasingly considered a source of variation in model
output that needs to be evaluated and quantified in a
systematic way [9,47,53]. For example, Bojke and col-
leagues identified four major types of uncertainties in
cost-effectiveness models [53]. However, systematic
approaches to identifying and analyzing structural
uncertainty in more complex population-based models
of chronic diseases are lacking. Nevertheless, between-
model comparisons can provide important insights
into the impact of different approaches to model build-
ing on simulation results. Examples of successful
between-model comparisons include the use of seven

independently developed CISNET models to assess the
impact of breast cancer screening and chemotherapy
on breast cancer mortality [38] and the comparison of
different diabetes models known as the Mount Hood
Challenge [54].
To assess the sensitivity of model output to alterna-

tive model structures, it may be useful to modify dif-
ferent aspects of the model one at a time. For
example, a new risk factor may be added to an existing
model, different assumptions about causal effects can
be incorporated, or a different type of computer model
can be built using the same conceptual structure and
parameters [9]. Simulations can be run for a range of
plausible assumptions about the distribution of the
omitted variable and its relationships to other vari-
ables. It is important to note that models should only
be compared when they generate comparable outputs.
For example, a population-based model and a cohort-
based model of OA would produce different measures
of disease burden and such models should not be
compared.

Comparisons with external data
There is some disagreement in the literature regarding
the use of external data in model validation. Sargent
advocates a formal external validation on a subset of the
data that has not been used in model development,
whereby statistical and graphical techniques are
employed to compare actual observations with predic-
tions from the model [8]. Similarly, Feuer et al state
“after the model is calibrated, other data sets must be
used to validate the model, that is, to evaluate whether
the model produces results that match observed data
not used for the calibration process” [16].
In contrast, Weinstein et al consider all comparisons

of model output with existing external data as part of
model calibration and refer to this process as model ver-
ification [4]. They reserve the term validation for com-
parisons with future events, observed after the model
has been developed and calibrated. Philips et al empha-
size that all available data should be used in model
development and data should not be withheld for the
purpose of external validation [12]. In other words, the
model should be consistent with all relevant data avail-
able at the time it is developed. These authors limit the
notion of external consistency to making sure that the
results make intuitive sense and seemingly counterintui-
tive results are explained [12].
Predictive validity
Weinstein et al define (predictive) validation as com-
parisons with prospective data (future events) [4].
After reviewing the conditions required for predictive
validation, such as constancy of the situation over
time and across variations of conditions not specified
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in the model as well as availability of sufficient data to
make predictive tests, they concluded that few models
in healthcare could ever be validated for predictive
use. This, however, does not disqualify such models
from being used as aids to decision making [4]. Philips
et al state that since a decision-analytic model is an
aid to decision making at a particular point in time,
there is no empirical test of predictive validity [12].
From a similar premise, Sculpher et al argue that pre-
diction is not an appropriate test of validity for such
models [13].
This issue is discussed from a slightly different per-

spective by Citro and Hanushek [9], who underscore
the distinction between (a) predicting differences in
outcomes between different scenarios or policies versus
(b) predicting absolute levels of the outcome in the
future. This distinction is important because errors
that affect different scenarios equally may cancel each
other. In decision-analysis models, absolute levels of
the outcomes are usually less important than compari-
sons between alternative policy options. However,
these authors also point out that comparisons between
scenarios may be affected by errors in absolute
predictions [9].
In contrast with decision-analysis models, popula-

tion-based simulation models are often used to explain
past trends in disease frequency or mortality and/or
predict future trends [3,15,16,22,24,28,31]. As empha-
sized by Weinstein et al, predictions from such models
should be treated with caution and regarded as condi-
tional on model assumptions [4]. Prospective validation
is rarely feasible because the time horizon for such
models is often too long. In lieu of prospective valida-
tion, ex-post forecasting and backcasting based on his-
torical data should be used to support predictive
validity [9]. Interpretation of the differences between
the observed and predicted values may be facilitated by
the knowledge of uncertainty bounds of the model
output and the distribution of the variable(s) of inter-
est in the population. What constitutes a “close” pre-
diction will depend on the practical implications of
prediction errors in a specific application of the model
and should be established in consultation with the user
of the model.
When historical data are used for external validation,

they should be different from the data used to populate
and calibrate the model [4,9,16]. Thus, withholding part
of the data for predictive model validation is appropri-
ate. For example, in the context of cancer models, inci-
dence data could be used for calibration and mortality
outcomes for validation [16]. Alternative approaches
that could approximate the expected results of external
validation and reduce the need for withholding data
are cross-validation and bootstrap re-sampling [55,56].

In these approaches, all available data can be used for
model calibration. Validation is accomplished by run-
ning the model on multiple subsamples from the target
datasets. In cross-validation, the data are split into mul-
tiple samples, whereas bootstrapping is based on re-
sampling with replacement. Although well established as
methods of validating statistical prediction models
[55,56], cross-validation and bootstrapping have not, to
our knowledge, been applied to validate disease simula-
tion models.
In the validation of population-based models, reliable

data on the effects of health policies may be more diffi-
cult to find than data on natural trends in disease fre-
quency or mortality. Randomized community trials of
population-based interventions are relatively rare,
whereas data on trends in disease incidence or mortality
may be available from cause-of-death statistics, national
registries (e.g., cancer registries) and large administrative
databases. On the other hand, data on treatment effects,
relevant to many decision-analytical models, may often
be obtained from randomized trials. Both types of data
have been used for external model validation. For exam-
ple, the CISNET cancer models have been validated by
comparing ex-post predicted and observed historical
trends in cancer incidence and mortality [16,24,38]. The
developers of the Archimedes diabetes model compared
model predictions against observed results from clinical
trials [25,26].

Evidence from the consequences of model-based
decisions
Sculpher et al [13] considered the question whether
cost-effectiveness models can be regarded as scientific
models. They argued that randomized trials (even ideal
pragmatic trials) and observational studies do not pro-
vide a valid test of model predictions. The reason is that
cost-effectiveness models are developed to improve deci-
sion-making, not to predict future events. However, they
concluded that such models are scientific because they
could be falsified, at least in principle, by comparing the
consequences of decisions that are based on models and
decisions that are not [13].
The above argument essentially equates model valid-

ity with usefulness [13]. Yet, how usefulness of a
model should be defined and measured is not clear.
Ideally, criteria for the acceptability of a simulation
model to the intended user should be specified in
advance [15]. While usefulness is related to the accu-
racy of projections generated by the model [9], the
level of accuracy needed for the model to be useful
will depend on the specific application. For decision-
analytical models, uptake of a given model by policy
makers could be considered an indirect indicator of
usefulness. Weinstein et al reviewed the applications of
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simulation models by the military, their role in influen-
cing environmental and public health policies, and
their use in the formulation of clinical practice guide-
lines [4]. The authors point out that the widespread
use of models in these areas demonstrates that models
“are perceived as valuable by organizations entrusted
with our healthcare dollars”[4]. However, it does not
necessarily prove they lead to better decisions. In prin-
ciple, the impact of models on the quality of decisions
could be evaluated directly in a variety of ways, includ-
ing subjective and objective measures. More research
on how these types of evaluations should be conducted
is needed.

Conclusions
In this paper we reviewed the types of evidence that can
be used to support the use of population-based disease
simulation models. Although a number of checklists for
model validation have been published, important gaps
remain in the validation literature. Our framework for
model validation includes the assessment of all aspects
of model development and implementation, examination
of model performance, and evaluation of decisions
based on the model. Recommendations for model vali-
dation based on the proposed framework are presented
in Table 1. These recommendations are intended to be
used primarily as general guidelines rather than a quan-
titative assessment tool. An optional scoring rule that
can be used to assess the degree of validation is
described in the Appendix. However, the scoring rule
has not yet been validated and should be regarded as
preliminary. We should emphasize that not all types of
evidence listed in Table 1 apply to all models and that
some validity criteria may be more important than
others, depending on the specific application. For exam-
ple, recommendations regarding parameters derived
from experts would not apply to models in which such
parameters are not used.
The focus of this review has been on validation

methods applicable to epidemiological simulation mod-
els of non-communicable diseases. Although most of
the guidelines should be helpful in evaluating other
types of models, including biological models and mod-
els of infectious diseases in which the simulated units
interact, a limitation of the current review is that addi-
tional issues, specific to the latter models, are not
discussed.
The importance of input data for model credibility

has been discussed extensively in the literature. How-
ever, issues pertaining to different data sources for the

parameters, calibration, and computer implementation
of the model have not been fully addressed in pub-
lished validation guidelines. Literature on the relative
merits of different calibration methods and different
types of simulation software is only beginning to
emerge. Making the mathematical equations underly-
ing the model available for assessment by independent
experts would improve model transparency and hence
credibility.
When examining model performance, it is important

to assess plausibility of the output and to perform
internal consistency and parameter sensitivity analyses.
However, the complexity of modern population-based
microsimulation models makes sensitivity analysis a
challenging and time-consuming task. Usually, sensitiv-
ity analyses will be limited to a relatively small subset
of parameters selected based on expert opinion and
sensitivity screening tools. Important evidence of valid-
ity can be obtained by comparing the results between
different models, although such evidence is rarely
available at this time. As the number of models
increases, between-model comparisons may become
more common.
With respect to comparing model output with exter-

nal data, published guidelines are not entirely consistent.
It is important in this context to distinguish between
decision-analytical models, whose sole purpose is to
help with decision making, and explanatory or predictive
models that may be used to explain or project trends in
health outcomes. For example, POHEM-based models
have been used mainly to compare alternative policy
scenarios for decision-analytical purposes. However, as
population-based models, they are expected to produce
outcomes that are useful for explanatory and predictive
purposes.
Most authors agree that a failure to predict past or

future trends does not automatically disqualify a model
from being a useful aid to decision making. The reason
is that policy decisions are based on comparisons
between different scenarios, in which systematic errors
in absolute predictions tend to cancel out. While cred-
ibility of both types of models can be enhanced by com-
parisons with external data that have not been used in
model development, such comparisons are especially
important for explanatory and predictive models. More
research is needed on the use of cross-validation and
bootstrap techniques for disease simulation models.
Finally, there is a need for further development of vali-
dation methods that compare the results of decisions
based on different models.
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Table 1 Recommendations for gathering evidence of model credibility

Evidence from examining model development process

Conceptual model

Underlying theories The conceptual model should be based on an accepted theory of the phenomena under study. The lack of an
adequate theoretical basis is a serious limitation that may compromise the model’s credibility.

Definitions of variables Definitions of the variables in the model should be justified. Evidence that the definitions are acceptable should be
provided (e.g., a reference to published and/or generally accepted clinical criteria or results from validation studies).

Model content and structure Evidence should be provided that the model is sufficiently complete and that the relationships between the
variables in the model are correctly specified. If some variables or interactions are omitted, explanations should be
given why this is acceptable and does not invalidate the results.

Parameters

Parameters obtained from
experts

The process of parameter elicitation should be described (number of experts, their areas or expertise, questions
asked, how the responses were converted to a parameter). Plausibility of the parameter value(s) should be assessed
by independent experts. Comparisons should be made with other sources (if available) and the differences
explained.

Parameters obtained from the
literature

Quality of the source should be ascertained. If available, a published meta-analysis should be used, but a single
high-quality study may be an alternative. If information from several sources is combined, the methodology should
be explained. Comparisons should be made with alternative sources and discrepancies explained. If alternative
sources are not available, plausibility of the parameter values should be assessed by independent experts.

Parameters obtained from data
analysis

Validity evidence regarding the data and methods of analysis should be equivalent to that required for a
publication in a scientific peer-review journal. The results should be compared with estimates from other sources
and (if not available) expert opinion. Evidence to support generalizability of the parameters to the population
modeled should be provided.

Parameters obtained through
calibration

Calibration methodology should be reported in detail (target data, search algorithm, goodness-of-fit metrics,
acceptance criteria, and stopping rule). Plausibility of the parameters derived through calibration should be
evaluated by independent experts and their values compared with external data (if available).

Computer implementation

Selection of model type A justification for the selected model type should be provided (stochastic vs. deterministic, micro vs. macro-level
simulation; discrete vs. continuous time models, interacting agents vs. non-interactive models, etc). Whether or not
the type of model is appropriate should be determined by independent experts.

Simulation software Information should be provided on the simulation software and programming language. The choice of software/
language should be justified.

Computer program Independent experts should evaluate the key programming decisions and approaches used. The results of
debugging tests should be documented and the equations underlying the model should be made open to
scrutiny by external experts.

Evidence from examining model performance

Output plausibility Plausibility (face validity) should be evaluated by subject-matter experts for a wide range of input conditions and
output variables, over varying time horizons.

Internal consistency Internal consistency should be assessed by considering functional and logical relationships between different
output variables. Internal consistency should be tested under a wide range of conditions, including extreme values
of the input parameters.

Parameter sensitivity analysis Model validation should include uncertainty and sensitivity analyses of key parameters. Screening methods should
be used to select the most influential parameters for more extensive analysis. If feasible, probabilistic uncertainty/
sensitivity analysis is recommended. If parameters are estimated through calibration, the model should be
recalibrated as part of uncertainty/sensitivity analysis. In probabilistic models, the Monte Carlo error should be
estimated.

Between-model comparisons Comparing the results of different models provides important evidence of validity. Between-model comparisons
should take into account the extent to which models are developed independently. If feasible, the impact of
different elements of model structure, assumptions, and computer implementation on the results should be
evaluated in a systematic fashion.

Comparisons with external
data

Ideally, prospective data should be used for external validation. If prospective validation is not feasible, ex-post
forecasting and backcasting based on historical data should be used to support predictive validity. Data used for
validation should be different from data used in model development and calibration. Cross-validation and
bootstrap methods can be considered as an alternative. Criteria for model acceptability should be specified in
advance.

Evidence from examining the consequences of model-based decisions

Quality of decisions Quality of decisions based on the model should be evaluated and compared with those based on alternative
approaches to decision making, using both subjective and objective criteria.

Model usefulness Uptake of a given model by policy makers should be monitored to assess model usefulness.
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Appendix
The Appendix can be found within Additional File 1.

Additional material

Additional file 1: Optional scoring for the assessment of the degree
of model validation.
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