Skip to main content

Table 1 Differences adjusted to the score of adherence to the Snack food consumption pattern (Z score). Colombian children (5 to 17 y) in 2010 and 2015

From: Adherence to a snacking dietary pattern is decreasing in Colombia among the youngest and the wealthiest: results of two representative national surveys

Variable

2010

2015

Adjusted differenceb

2015–2010

P

Interaction

na

Mean

SE

P value

na

Mean

SE

P value

Sex

   

0.375

   

0.014

 

< 0.0001

 Male

5154

0.66

0.02

 

6753

0.29

0.04

 

−0.40 (− 0.46, − 0.34)

 

 Female

4996

0.68

0.02

 

6490

0.35

0.04

 

− 0.34 (− 0.40, − 0.28)

 

Age group (y)

   

< 0.0001

   

< 0.0001

 

< 0.0001

 Children (5–10)

3794

0.53

0.02

 

4627

0.21

0.04

 

−0.36 (− 0.43, − 0.30)

 

 Teenagers (11–17)

6356

0.75

0.02

 

8616

0.41

0.04

 

−0.37 (− 0.44, − 0.31)

 

Age (y)

   

< 0.0001

   

< 0.0001

 

< 0.0001

 5–8

2481

0.51

0.02

 

3274

0.21

0.05

 

−0.35 (− 0.42, − 0.28)

 

 9–11

1949

0.57

0.03

 

2090

0.25

0.04

 

− 0.36 (− 0.44, − 0.28)

 

 12–15

3480

0.78

0.02

 

5064

0.44

0.04

 

−0.38 (− 0.46, − 0.31)

 

 16–17

1880

0.74

0.03

 

2815

0.40

0.04

 

−0.36 (− 0.45, − 0.28)

 

Stunting (Height/Age)

   

< 0.0001

   

< 0.0001

 

< 0.0001

 No

8820

0.69

0.01

 

12,010

0.34

0.04

 

−0.37 (− 0.42, − 030)

 

 Yes (Z < -2)

1324

0.51

0.04

 

1227

0.08

0.05

 

−0.42 (− 0.54, − 0.31)

 

Nutritional status (BMI)c

   

0.068

   

0.728

 

< 0.0001

 No

4190

0.79

0.02

 

11,075

0.33

0.04

 

−0.40 (− 0.47, − 0.33)

 

 Overweight (≥25)

736

0.74

0.05

 

1691

0.27

0.03

 

−0.43 (− 0.54, − 031)

 

 Obesity (≥30)

201

0.65

0.08

 

477

0.37

0.09

 

−0.31 (− 0.51, − 0.10)

 

Household food insecurity

   

< 0.0001

   

0.186

 

< 0.0001

 No

3004

0.82

0.02

 

4108

0.37

0.04

 

−0.46 (− 0.53, − 038)

 

 Light

3768

0.63

0.02

 

4686

0.30

0.04

 

−0.36 (− 0.43, − 0.30)

 

 Moderate

1973

0.56

0.03

 

2512

0.37

0.04

 

−0.31 (− 0.39, − 0.22)

 

 Severe

1393

0.52

0.04

 

1937

0.31

0.08

 

− 0.26 (−0.40, − 012)

 

Wealth index quintile

   

< 0.0001

   

< 0.0001

 

< 0.0001

 1- poorest

3595

0.33

0.02

 

2839

−0.05

0.04

 

−0.33 (− 0.41, − 025)

 

 2

2462

0.58

0.03

 

2794

0.25

0.05

 

−0.30 (− 0.39, − 0.20)

 

 3

1815

0.82

0.03

 

2762

0.36

0.03

 

−0.38 (− 0.46, − 0.29)

 

 4

1303

0.82

0.03

 

2525

0.45

0.04

 

−0.35 (− 0.43, − 0.26)

 

 5- wealthiest

975

0.93

0.04

 

2323

0.44

0.05

 

−0.48 (− 0.59, − 0.37)

 

Ethnicity

   

< 0.0001

   

0.170

 

0.003

 Mestizo

7702

0.68

0.02

 

10,620

0.32

0.04

 

−0.38 (− 0.43. -0.33)

 

 Black/Afro

1103

0.74

0.04

 

1393

−0.14

0.06

 

−0.71 (− 0.82, − 0.59)

 

 Indigenous

1234

0.16

0.05

 

1125

0.55

0.06

 

0.20 (0.05, 0.35)

 

Area

   

< 0.0001

   

< 0.0001

 

< 0.0001

 Urban

6549

0.82

0.02

 

9723

0.44

0.04

 

−0.39 (− 0.45, − 032)

 

 Rurald

3601

0.28

0.02

 

3520

−0.01

0.03

 

−0.30 (− 0.37, − 0.22)

 

Region

   

0.499

   

0.287

 

< 0.0001

 Central

2335

0.70

0.03

 

3189

0.40

0.11

 

−0.35 (− 0.52, − 0.19)

 

 Atlantic

2292

0.76

0.03

 

2410

0.36

0.05

 

−0.45 (− 0.54, − 0.36)

 

 Oriental

1481

0.57

0.03

 

2272

0.23

0.04

 

−0.42 (− 0.50, − 0.33)

 

 Pacific

1406

0.43

0.03

 

1659

0.27

0.11

 

−0.18 (− 0.34, − 0.02)

 

 Bogotá

524

0.94

0.04

 

877

0.37

−0.00

 

− 0.58 (− 0.66, − 0.49)

 

 National territories

2112

0.38

0.03

 

2836

0.02

0.04

 

−0.42 (− 0.51, − 0.33)

 
  1. aIn 2010 n may be less than 10,150 for missing values. In 2015 n may be less than 13,243 for missing values
  2. bAdjusted difference and 95% confidence interval achieved in a linear regression model with the score of adherence (Z score) to the snack pattern as a dependent variable and predictors that include indicator variables for each sociodemographic correlates, year 2015 (2010 as reference) and cross-product (interaction) terms between year and indicator variables of the correlate. In addition, the linear regression model was adjusted by the following covariables; sex, age, food security, wealth index, ethnicity, area and region. The complex sampling survey design was taken into account in all multivariate regression models
  3. cBased on equivalent cut-off points using the IOFT classification
  4. dThe rural category included suburban population centers close to small cities, towns in rural areas distant from small towns, and disperses or very distant from rural towns