Skip to main content

Table 2 Models of the epidemic part ξi, t with assumptions made on interactions between the viruses with and without the climatic factors

From: Time series non-Gaussian Bayesian bivariate model applied to data on HMPV and RSV: a case of Dadaab in Kenya

Model ξi, t  (with climatic factors) ξi, t  (without climatic factors)
1 λyi, t − 1 + τi, kxk, t − 1 λy i, t − 1
2 \( {\lambda y}_{i,t-1}+\phi \sum \limits_{j\ne i}{w}_{ji}{y}_{j,t-1}+{\tau}_{i,k}{x}_{k,t-1} \) \( {\lambda y}_{i,t-1}+\phi \sum \limits_{j\ne i}{w}_{ji}{y}_{j,t-1} \)
3 λiyi, t − 1 + τi, kxk, t − 1 λ i y i, t − 1
4 \( {\lambda}_i{y}_{i,t-1}+\sum \limits_{j\ne i}{w}_{ji}{\phi}_i{y}_{j,t-1}+{\tau}_{i,k}{x}_{k,t-1} \) \( {\lambda}_i{y}_{i,t-1}+\sum \limits_{j\ne i}{w}_{ji}{\phi}_i{y}_{j,t-1} \)
5 λi, t − 1yi, t − 1 + τi, kxk, t − 1 λ i, t − 1 y i, t − 1
6 \( {\lambda}_{i,t-1}{y}_{i,t-1}+\sum \limits_{j\ne i}{w}_{ji}{\phi}_{i,t-1}{y}_{j,t-1}+{\tau}_{i,k}{x}_{k,t-1} \) \( {\lambda}_{i,t-1}{y}_{i,t-1}+\sum \limits_{j\ne i}{w}_{ji}{\phi}_{i,t-1}{y}_{j,t-1} \)