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Abstract

Background: Estimates of the burden of disease caused by a particular agent are used to assist in making policy
and prioritizing actions. Most estimations have employed the attributable fraction approach, which estimates the
proportion of disease cases or deaths in a specific year which are attributable to past exposure to a particular

agent. While this approach has proven extremely useful in quantifying health effects, it requires historical data on

exposures which are not always available.

Methods: We present an alternative method, the future excess fraction method, which is based on the lifetime risk
approach, and which requires current rather than historical exposure data. This method estimates the future
number of exposure-related disease cases or deaths occurring in the subgroup of the population who were
exposed to the particular agent in a specific year. We explain this method and use publically-available data on
current asbestos exposure and mesothelioma incidence to demonstrate the use of the method.

Conclusions: Our approach to modelling burden of disease is useful when there are no historical measures of
exposure and where future disease rates can be projected on person years at risk.

Keywords: Burden of disease, Methodology, Policy, Prevention

Background

Burden of disease estimates are used widely to assist in
policy-making and prioritizing of actions [1]. The most
commonly used method for estimating burden of disease
is the attributable fraction approach. Using this ap-
proach, estimates of the proportion of disease cases or
deaths in a specific year are calculated as being attribut-
able to past exposure [2]. Most of these type of studies
obtain the proportion of the population exposed from
historical surveys representative of the population for
which the burden is being calculated [3]. While this ap-
proach has proven extremely useful in quantifying health
effects to guide prevention methods [4], it requires that
data on historical exposures are available.

We have developed an alternative method, based on
the lifetime risk approach, which estimates the excess
exposure-related disease cases or deaths occurring in the
future in the subgroup of the population who were ex-
posed to the agent in a specific year [5]. This method,
termed the future excess fraction (FEF) method can be
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conceptualized as the creation of a virtual cohort, with
some cohort members exposed to a particular agent in a
specific year and others not. This cohort is followed
through time into the future, and the number of cases of
disease in the whole cohort is estimated (Fig. 1). Then,
using the prevalence of the exposure and the relative risk
of disease due to that exposure, we can calculate the
number of exposure-related disease cases or deaths oc-
curring over a specified future period in the subgroup of
the population who were exposed to the particular agent
in a specific year due to their exposure.

The FEF approach can be used when no historical ex-
posure data are present and projections of the disease
can be made on future person years at tirk. The primary
value of the method is that it allows us to look at hy-
pothesized future scenarios in which nothing changes
and, in comparison, what would happen with various
planned interventions.

In this paper we explain the FEF method and demon-
strate its use with data on occupational asbestos expos-
ure and mesothelioma.
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Fig. 1 Comparison between attributable fraction approach and
future excess fraction approach
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The lifetime risk method

The risk of developing cancer or other conditions is
often presented as the probability of developing the disease
over a lifetime or the ‘lifetime risk’. For example, in 2011,
the risk for Australian males of being diagnosed with
mesothelioma before their 85th birthday was 1 in 130 or
0.8 % [6]. The ‘lifetime’ we refer to here is the lifetime of all
members of a cohort, as a specific individual's risk of can-
cer varies depending on their own risk factors [7].

There are several ways to calculate lifetime risk. The
Cumulative Risk is the probability of developing or dying
from a disease up to a specific age. It is calculated by
summing the age-specific incidence rates for each year
up to an upper age limit and is usually expressed as a 1
in n chance [8]. It may be understood as a standardized
rate which has used 1.0 for each age weighting factor.
The Cumulative Risk does not take into account the
competing mortality risk and is highly dependent on the
upper age limit chosen [7]. Therefore a cumulative risk
is only valid if an individual can only have a maximum
of one disease event. It provides an approximation of the
lifetime risk of disease when the upper age limit is close
to the population's average life expectancy but typically
this is an over-estimate of the true lifetime risk.

A more realistic estimate of the lifetime risk was devel-
oped by Goldberg et al. [9] who incorporated the competing
risk of mortality through the use of life tables and a hypo-
thetical birth cohort to calculate the number of cases that
would occur within each age band. Further work by Sasieni
et al. [10] included adjustment for multiple disease events.

Bender et al. [7] proposed that the expected numbers
of cases of diseases should be calculated from the
disease-free population's person-years rather than the
total population. In their revised Person-Years (PY)
model, the lifetime risk is calculated as the total number
of cancers experienced by the cohort from age x divided
by the number of cohort survivors at age x.

We based our FEF model on the PY model [7] with
some changes (described below) to make it more appro-
priate for our requirements.
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Methods
We use the following naming conventions:

Npg is the number of individuals in population P at
time ¢

Neg- ) is the number of individuals in population P
who are exposed to the agent in the index year

Dpg is the number of disease cases in population P at
time ¢

LRp is the lifetime risk of disease in population P

FNp is the total number of disease cases in population
P over a lifetime

The key steps of our FEF approach are outlined below.

Step 1. Define the index year (t = 0) as the year in
which the study population is defined and the
exposure categorization is made. Define the
population of interest, which may be the
current resident population perhaps limited by
age, sex or other factors. For simplicity, in the
methodological overview we have stratified by
age but not sex. The total number of
individuals in the population in the index year
is denoted by N, _ ¢).

Step 2. Estimate the number of individuals in the
population of interest who are exposed to the
agent in the index year (N, - o). Note that
there may be a range of exposures in this group
(in both level and duration up to t =0). Also
note that those who have been exposed in the
past to the agent but are not exposed in the
index year will be classified as unexposed. The
number of unexposed individuals is Ny - ¢).

Step 3. Estimate the future Person Years at Risk
(PYAR) for the population of interest
irrespective of exposure using standard life
tables. These tables use national death rates to
estimate the probability that an individual of a
certain age is alive at each age in the future.
Single decrement tables assume that an
individual continues to contribute person years
to the cohort until they die. Double decrement
tables, which take into account the competing
probabilities of death from any cause as well as
incidence of the disease of interest can be used
if the disease of interest is an absorbing state
with no possibility of a return transition. Multi-
state life tables provide for the possibility of re-
turn transitions but increase further the data
requirements and complexity of the method.

Step 4. Estimate the age-specific death or incidence
rates for the disease of interest in each age
group at the midpoint in the index year.

Step 5. Calculate the projected future age-specific rates
of disease for each future period of, for
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example, 10 years (which we will refer to as the
estimation interval). This estimate is irrespective
of exposure. Projection of future rates usually re-
quires an estimate of historical rates and a pro-
jection model and methods will differ according
to the disease of interest.

Step 6. Calculate the estimated number of disease cases
(Dy) at each estimation interval by multiplying
the age-specific rate at the midpoint of the esti-
mating interval by the person-years in the rele-
vant cell. Sum these to arrive at the total
number of disease cases in the lifetime of the
population (FN)).

Step 7. Estimate the lifetime risk in the population
(LR,) for the disease. This estimate is
irrespective of exposure and calculated per
individual aged i for each estimation interval j
according to the equation:

j=u

LRp =y =~ _
= Np(=0)

Where u = upper limit and / = lower limit of both
age and year

Step 8. Obtain an effect measure such as a relative risk
estimate (RR) for each disease-agent pairing
from existing literature. This should be an ef-
fect measure which corresponds with the defin-
ition of exposure used in step 2. It is possible to
use multiple effect measures corresponding to
multiple levels of exposure, but for simplicity
we have assumed there is just one level of
exposure.

Step 9. Calculate the lifetime excess risk (LR,) for an
individual exposed to the agent in the index
year. Theoretically, this should be calculated as:

LR, = LR, * (RR-1)

where (RR - 1) is the excess risk in the exposed
relative to the unexposed and LR, is the baseline
risk in the population in the absence of exposure.
This assumes that the ratio between the excess risk
of disease in the exposed and the risk in the
unexposed at baseline equals the ratio of the lifetime
risks, as LR,/LR,, = (R,— R,)/R,, = R,/R,, where RR =
R./R,, R, is the risk of disease in the exposed, R, is
the risk in the unexposed and R, is the excess risk
due to the exposure [2]. This is similar to an
assumption made in the attributable fraction
approach. However, LR, is not usually available so
LR, (lifetime risk in the whole population) is
sometimes used. Because LR, is calculated for the
whole population (including both exposed and
unexposed individuals) it is higher than the baseline
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risk in the absence of exposure (LR,). For agent-
disease combinations with low prevalence and/or
low relative risk estimates LR, is very similar to LR,,.
However the difference can be significant for agent-
disease combinations with high prevalence and/or
high relative risks. We have therefore modified this
equation (see Appendix) to arrive at the following:

LR. — (LRP * Np(t:O)) (RR—l)
* " Nuy(e=o) + Ne—0) * RR

This equation only holds under the assumption that
RR is greater than 1.0.

Step 10. Estimate the Future Excess Number (FEN) of
disease cases related to exposure that can be
expected to occur over the lifetime of the
exposed subcohort in the index year by
multiplying the individual lifetime excess risks
(LR,) by an estimate of numbers exposed (N,
- ). Although it is a similar concept we have
not called this the Attributable Number to
avoid confusion with the terminology used in
the attributable fraction approach.

Step 11. Calculate the Future Excess Fraction (FEF) of
diseases in the exposed population which are
due to exposure in the index year by dividing
the FEN by the total expected number of
disease cases in the population. The total
expected number of diseases in the population
is equal to the product of the lifetime risk in
the population multiplied by the number of
individuals in the cohort (exposed and
unexposed).

FEN

FEF = ———
LRP * Np(t:O)

Example data

Our example is that of the proportion of future meso-
theliomas which are attributable to occupational expos-
ure to asbestos in Australia in 2012.

1. The index year was 2012. The population of interest
(the “virtual cohort”) was the 2012 working age
population in Australia (18—65 years), divided into
an initial two year age band (18—19 years) and
subsequent five-year age bands, and stratified by sex.

2. The number of individuals who were occupationally
exposed to asbestos in 2012 (N - 2012) was
extrapolated from a national survey [11].

3. The Person-Years at Risk for the working age popu-
lation was calculated using the 2012 mid-year popu-
lation statistics [12] and a matrix of future individual
person-years which was truncated according to a
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double decrement table (death and first diagnosis of
mesothelioma as endpoints). Because of the poor
prognosis of mesothelioma it can be thought of as
an absorbing state.

4. Age- and sex-specific incidence rates for mesotheli-
oma at the midpoint of 2012 were obtained from the
national cancer registry [6].

5. Projected future rates of mesothelioma were
calculated for each age group, sex and 5-year period
using CanProj [13] for the period 2010 until 2094.
CanProj is an R package which uses a decision tree
to determine and conduct the most appropriate for-
ward projection model, whether age-period-cohort
(APC; “power5”) or a loglinear regression model
(“hybrid”).

6. The age-specific future mesothelioma rates in each
estimation interval were multiplied by the age-
specific person-years at risk of the working age
population in the same estimation interval and
summed to estimate the total number of mesothelio-
mas in each estimation interval (D,,). The sum of all
D, is the FN,,

7. The sex-specific lifetime risk of disease (LR,) was
then calculated as FN,, divided by N, _ 2012)

8. Relative risk of mesothelioma for a member of the
population occupationally exposed to asbestos was
obtained from a Spanish study [14]. This study was
chosen as it compared subjects who had never been
exposed to asbestos at work with those exposed
occupationally to asbestos in similar working
circumstances as in Australia.

The formulae in Steps 9-11 were then used to calcu-
late the excess lifetime risk (LR,) of mesothelioma due
to occupational exposure in 2012 for the population
aged 18-65 years in 2012, as well as the FEN and FEF
which are the future excess number and fraction of meso-
theliomas in the cohort from 2012 to 2094 which occur in
those occupationally exposed to asbestos in 2012 and are
attributed to occupational asbestos exposure.

For comparison purposes we undertook an analysis
using the attributable fraction (AF) method. We used
the same index year, 2012 working population, propor-
tion exposed in 2012, and relative risk as in the example
above (steps 1, 2, and 8). We predicted the AF of meso-
theliomas using the formula:

AF = [Pr(E2012) * (RR—I)] / [1 + PF(Ezou) * (RR—I)]

We used the same method as above (steps 3 to 6) to
calculate the number of mesotheliomas occurring only
in the year 2052. The attributable number was equal
to the AF multiplied by the number of mesotheliomas
in 2052.
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Results

Table 1 summarizes the results for the lifetime risk model.
Lifetime risk of mesothelioma in the 2012 working age
population was estimated at 33/10 000 for males and 15/
10 000 for females. Of future mesotheliomas in the
current working age population about 32 % in males and
<1 % in females are likely to be due to occupational expos-
ure in those workers exposed to asbestos in 2012 (FEF).

Using the AF approach we estimated that there would
be 240 mesotheliomas in men occurring in 2052 due to
exposure in 2012 with an attributable fraction of 39 %.
In women there would be 1 mesothelioma and the AF
would be <1 %.

We undertook sensitivity testing of the models in rela-
tion to the outputs in Table 1 for five primary inputs
(numbers exposed, future population, future incident
cases, future mortality rates, and RR).

In both sexes, when we varied the number of people
exposed to asbestos (but not the future incident cases), a
flow on effect resulted in a sensitive inverse relationship
in the calculation of LR, and subsequently a significant
sensitivity change in FEN and FEF. These changes were
more prominent in males, as females have a compara-
tively lower number exposed.

When we changed the baseline population numbers
used in the lifetime risk model while keeping the num-
ber of exposed the same, we saw an inverse relationship
between population numbers and LR,, FEN, and FEF.

Bender’s model [7] may be more sensitive to incidence
than to mortality and sensitivity analysis confirmed this.
Altering the mortality rates used in the double decrement
tables affected PYAR and resulted in small inverse changes
in LR, LR,, and FEN (which were less than proportional).

Table 1 Results from the future excess fraction method
estimating the lifetime risk of mesothelioma (2012 to 2094) in
the Australian working population exposed to asbestos in the
year 2012

Males Females
Proportion of working age population 0.0347 0.0004
exposed to asbestos in 2012 [11]
Number of working age people in 2012 253110 2757
exposed to asbestos
Lifetime risk in the 2012 working age 0.3 % 0.1 %
population (LR,)
Total number of mesotheliomas in the 23,819 10,679
2012 population until 2094 (D)
Lifetime excess risk of mesothelioma for 4.26 % 334 %
those exposed to asbestos in 2012 (LR,)
Future number of mesotheliomas in the 7549 22
working age population due to occupational
asbestos exposure in 2012 (FEN)
Fraction of future mesotheliomas in the 0317 0.002

working age population due to occupational
exposure in 2012 (FEF)
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However if the incidence rates of future cancers were
altered the changes in the same three outcomes were
proportional.

Changes in RR resulted in a significant change in LR,,
FEN and FEF for both sexes. Changes were larger in females
due to the comparative increase in the calculation of LR,.

Discussion

We have presented a novel approach to calculate the fu-
ture effect of exposures occurring now. This method can
be used for a range of different exposures and diseases
for which exposure data are available for an index year
and there are appropriate data for predicted future rates
of disease. We have written an R program which is avail-
able on request for other researchers wishing to use this
method.

Comparisons with other methods

The FEF as calculated with this method is not directly
comparable to the attributable risk percent as calculated
with the attributable risk approach. As shown in Fig. 1,
the approaches are estimating different concepts and are
using different data. For example, occupational use of
asbestos in Australia was much more widespread in the
past than it was in 2012 and people who are still work-
ing in 2012 may have previously been occupationally ex-
posed to asbestos. It might be more appropriate for the
AF method to use the proportion of workers in 2012
who have ever been exposed to asbestos at work rather
than a point prevalence of exposure in 2012. However
such data are unavailable.

Only one other study has calculated the future burden
of mesothelioma due to occupational exposure to
asbestos - Hutchings et al. estimated that, by 2060,
about 73 % of mesotheliomas will still be attributable
to exposure to asbestos that is occurring at work
beteween now and then [15]. The major difference
between this method and the FEF method is that we
do not include future exposure to asbestos.

Several previous studies have estimated the proportion
of current mesotheliomas due to past occupational expos-
ure to asbestos. A UK study used actual mesothelioma
counts and concluded that 97 % of male mesothelioma
deaths and 82 % of female mesothelioma deaths in 2004
were due to past occupational or environmental exposure
to asbestos [16]. In the Australian Mesothelioma Registry
in 2014, 74 % of mesotheliomas in males and 4 % in
females had an occupational cause [17]. A French study
examined work histories of mesothelioma cases and con-
trols and calculated AFs of 83 % for men and 42 % for
women [18]. Other investigators have assumed that all
mesotheliomas are due to occupational exposure, that is,
that the AF is 100 % [19]. In Australia, the number of
people exposed to asbestos, particularly at high levels, has
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fallen markedly in the previous 50 years, and more
exposure is occurring in non-occupational scenarios
[20] so these proportions will decrease in the future.

Assumptions and implications of the assumptions

A major consideration in the use of the FEF method is
the definition of the exposed population. In our example
we used the prevalence of exposure in the index year.
This is similar to the usual way of implementing the at-
tributable fraction approach when a point prevalence of
exposure in one historical year is used [3]. An alternative
is to use the prevalence of “ever exposed” in the index
year or historical year, if these data were available. Doing
this would take account of the effect of duration of expos-
ure which contributes to the estimates of risk (RR) used.
The difference between point prevalence and prevalence
of “ever exposed” would be likely to be greater for expo-
sures which change over time. For example, occupational
exposures change when a worker changes a job, and
therefore the prevalence of “ever exposed” is likely to be
higher than the prevalence of exposure at a single point in
time and use of the point prevalence will underestimate
the number of future cases. However, this may not be the
case for relatively constant exposures such as obesity and
alcohol intake which are less likely to change markedly
over time. A method of adjusting point prevalences with
turnover rates to more closely resemble the “ever ex-
posed” prevalence has also been used [21].

When using the FEF method it is necessary that the
chosen RR matches the definition of exposure used for
the estimation of exposure prevalence. In our example,
the exposure information was limited to whether there
was or was not exposure to asbestos in the index year
and we had no information on how long exposure had
occurred nor the intensity of that exposure although a
level of intensity may be available for other agents. We
used a point prevalence estimate of exposure in the
index year and implicitly assumed that there was a nor-
mal distribution curve with regard to the length of ex-
posure and the level of exposure. There would be people
exposed in the index year who had very low exposure
for a short period as well as people who had high expos-
ure for a long period. We used a RR from the general
working population which would also have included
people with a range of durations and levels of exposure.
Although this RR is related to “ever exposed” it is appro-
priate to apply to the number of people exposed only in
the index year, rather than also including those ‘ever ex-
posed’ prior to but not in that year. Because the effect
measure has a significant impact on the results it is im-
portant that the most appropriate and best justified
measure is chosen. Meta-analyses and pooled analyses
may be the best source for the effect measure if these
are available.
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We did not include a latency period in our estimates
of lifetime risk. Similarly to the assumption of previous
exposure, we assumed that there was no need for a la-
tent period as some people exposed in the index year
had been exposed for a long time and may have devel-
oped mesothelioma soon after the index year. An advan-
tage of the LR approach is that it avoids the need to
account for latency, as it estimates disease appearing
over a lifetime rather than in a specific year, so that tim-
ing is not relevant.

Life tables were used for estimating the projected
future person-years at risk. While mortality rates in
the future may change, sensitivity analysis found that
the FEN and FEF in the exposed were sensitive to
changes in prevalence of exposure, population numbers,
and relative risks, but much less sensitive to changes in
mortality.

A limitation of the FEF method is the accuracy of pro-
jections of future disease. The validity of a projection
will vary by the disease outcome being modelled. In our
example, high quality national cancer registry data were
available for the previous 30 years, but this is not always
the case for other diseases or other countries. The future
number of cases depends on the change in size and age
structure of the population (which is relatively easy to
predict), as well as changes in the rates of disease (which
are more difficult to predict) [22]. We used CanProj
which estimates likely future trends based on what has
been observed in the past and does not take into ac-
count possible changes in risk factors (such as changes
in smoking patterns). We projected rates for over
80 years into the future, so errors are likely to be large,
others may limit the projection to a shorter interval.
Even so, cancer is one of the diseases for which there is
a relatively good range of options for projecting future
rates. Most of the approaches are based on age-period-
cohort models including a recently produced Bayesian
method [23]. An alternative to using a forward projec-
tion model that takes account of competing risks caus-
ing the same disease outcomes (step 5 in the example)
would be to apply a constant disease rate (for t=0, e.g.,
2012) to projected PYAR.

Policy applications

In the FEF method, exposure can easily be varied to pre-
dict the effect of various control measures. For example,
in the case of cigarette smoking it is possible to model
the effect of policies such as reducing tar content of cig-
arettes, mandating plain packaging, or increasing cost.
Because the estimations are based on changes to current
exposure, they are readily understood by policy makers.
In addition, the exposures are current, so are of more sa-
lience to policy makers than exposures occurring in the
past (e.g., it may be easy to disregard mesotheliomas
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arising from past exposure to asbestos in the belief that
current exposure is negligible).

Optional extensions to the FEF model

Researchers with more detailed exposure data may be able
to match their exposure categories with several RRs. For
example, if there are population data on the prevalence of
exposure to cigarette smoking for the index year, it may
be possible to use different RRs for the different categories
of pack-years. This would allow prediction of the effect of
reducing exposures (e.g., smoking fewer cigarettes a day)
rather than completely eliminating exposures.

Multiple exposures or outcomes can be accounted for
using the product of complements method [2]: In this
method the combined FEF for one outcome is equal to
the complement of the product of the complement of
each FEF for k exposures.

FEF compinea = 1~ | [, (1-FEFy)

The combined FEF can be multiplied by the number
of expected outcomes in the population to obtain the
combined FEN for one outcome and multiple exposures.
Combined FENs for different outcomes can be summed
to obtain the overall number of attributable outcomes.

In conclusion, the future excess fraction method offers a
different way of expressing the burden of disease which is
readily understandable by the general public and by those
with the ability to influence public health decisions.
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Appendix
The formula for calculating lifetime excess risk (LR,) for
an individual exposed to the agent in the index year is:

LR, = LR, * (RR-1) (1)

where (RR - I) is the excess risk in the exposed relative
to the unexposed and LR, is the baseline risk in the
population in the absence of exposure. Since LR, is not
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usually available we have derived a version of this for-
mula which does not require an estimate of LR,,.

The lifetime risk in the population in a specific year is
equal to the total number of estimated disease cases
(D;y) divided by the total number in the population in
the index year (N, - o).

J=u
1= Y )
= Np(=o)

In this formula, the total number of disease cases is equal
to those occurring in the unexposed (FN,,), plus those oc-
curring in the exposed which would occur without expos-
ure (baseline incident cases = FN,;,) plus those occurring in
the exposed due to the exposure (excess cases = FEN).

FN, + FNg, + FEN

LR, =
3 Np(e=o)

(3)

(LRM * Nu(t:O)) + (LRu * Ne(t:O)) + (LR,C * Ne(t:O))

LR, =
3 Np-o)

(4)
Solving for LR, and substituting Ny - o) for (Ny¢ - o)
+ Nee = 0))
LRy * Np(1=0) = LR, * (Nu(t:()) + Ne(t:o)) + (LR,C * Ne(t:()))
(LRp % Np(e=0)) = (LR * Ne(r=0)) = LRy * (Nu(e=0) + Ne(e=0))
(LRp % Np(i=0)) = (LR * Ne(e=0)) = LRy * Np(10)
(LRp % Np(e=0)) = (LR: * Ne(r=0))
Np(i=0)

LR, =
(5)
Substituting this in Eq. (1) and simplifying:

[(LR, * Np(—0)) — (LRy * Ng(—g))] * (RR-1)
Np(t=0)

LR, =
(6)
LR, % Np(—o) = (LRp * Nj—0)) (RR-1)— (LR * N¢(;—o)) (RR-1)

(LR, * Np(t—0)) + (LRy * Ny(—9)) (RR-1) = (LRp * Np,—¢))
(RR-1)LR,(Ny(1—0) + Ne(t—0)(RR-1)) = (LRp * Np;_o)) (RR-1)
(LRp * N(z—o)) (RR-1)

LR, =

¥ Np(t=0) + Ne(r—0)(RR-1)
IR — (LRp * Np(—g) ) (RR-1)

* (Nu(t=0) + Ne(t=o)) + N (RR-1)
IR, - (LRp * Np(,—0)) (RR-1)

Ny(t=0) + Ne(—0) * RR
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