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Abstract

Background: Mathematical and computational models provide valuable tools that help public health planners to
evaluate competing health interventions, especially for novel circumstances that cannot be examined through
observational or controlled studies, such as pandemic influenza. The spread of diseases like influenza depends on
the mixing patterns within the population, and these mixing patterns depend in part on local factors including the
spatial distribution and age structure of the population, the distribution of size and composition of households,
employment status and commuting patterns of adults, and the size and age structure of schools. Finally, public
health planners must take into account the health behavior patterns of the population, patterns that often vary
according to socioeconomic factors such as race, household income, and education levels.

Results: FRED (a Framework for Reconstructing Epidemic Dynamics) is a freely available open-source agent-based
modeling system based closely on models used in previously published studies of pandemic influenza. This version
of FRED uses open-access census-based synthetic populations that capture the demographic and geographic
heterogeneities of the population, including realistic household, school, and workplace social networks. FRED
epidemic models are currently available for every state and county in the United States, and for selected
international locations.

Conclusions: State and county public health planners can use FRED to explore the effects of possible influenza
epidemics in specific geographic regions of interest and to help evaluate the effect of interventions such as
vaccination programs and school closure policies. FRED is available under a free open source license in order to
contribute to the development of better modeling tools and to encourage open discussion of modeling tools
being used to evaluate public health policies. We also welcome participation by other researchers in the further
development of FRED.
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Background

Mathematical and computational models provide valuable
planning tools for public health challenges, especially for
novel circumstances that cannot be examined through ob-
servational or controlled studies, such as pandemic influ-
enza [1-12] or hypothetical bioterrorist attacks [13,14]. The
development of models ideally involves a close working re-
lationship between the modeling team and the decision-
maker using the model. Beyond the immediate outputs of
a model itself, the modeling process itself can serve as a
way of thinking through complex situations and clarifying
assumptions [15]. While mathematical models have a long
history of providing solid foundations for understanding
disease dynamics [16], the tractability of analytic models
may require neglecting heterogeneities in the population
that may have important impacts on epidemic dynamics
and on the effectiveness of possible interventions. For ex-
ample, it has been suggested that attack rates for the 2009
HIN1 pandemic exhibited a high degree of spatiotemporal
heterogeneities among different regions due to regional dif-
ferences in socio-demographic factors [17]. In particular,
the spread of infectious disease such as influenza depends
on the mixing patterns within the population, and these
patterns are in turn determined by numerous factors, in-
cluding: population size and density [18,19], the age struc-
ture of the population [20], the size and composition of
households [21], school sizes and schedules [6,10,22-24],
demographic and socioeconomic risk factors [25] including
access to health care facilities [9,11,26], employment pat-
terns and policies [27], travel and commuting patterns
[12,28], and local behavioral practices including vaccine ac-
ceptance [26,29] and personal hygiene [30]. With these
considerations in mind, public health officials may have
particular interest in planning tools that take into account
the specific characteristics of the local population of the re-
gion under their responsibility and that permit them to
compare expected outcomes within their jurisdiction with
expected outcomes in surrounding communities, or across
an entire state.

This article describes FRED (a Framework for Re-
constructing Epidemic Dynamics), a freely available open-
source epidemic modeling system that uses census-based
synthetic populations to capture the demographic and
geographic heterogeneities of the population, including
realistic household, school, and workplace social networks.
FRED models are currently available for every state and
county in the United States, and selected international lo-
cations. State and county public health planners can use
FRED to explore the effects of possible influenza epi-
demics in their regions and to help evaluate the likely ef-
fect of interventions such as vaccination programs and
school closure policies.

FRED represents a major software redesign and open-
source release of epidemic models used in previously
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published studies by our team to evaluate potential re-
sponses to influenza pandemics, including vaccination
policies [5,7-9], school closure [6,10], the role of health
care workers [11], and the effects of subway travel [12].
Building on these previous models, FRED was designed
as a flexible framework for epidemic modeling, rather
than a fixed model of a particular infectious disease.
While originally designed to study influenza, FRED can
be adapted to other infectious diseases, such as measles,
by modifying configuration files characterizing the nat-
ural history of the disease. Other user-modifiable pa-
rameters include the initial immunological profile of the
population, the availability and efficacy of vaccine and
anti-viral drugs, and a flexible set of intervention pol-
icies regarding vaccine distribution, school closures and
other non-pharmaceutical interventions. In addition,
human behaviors in response to an epidemic can also be
modeled in a variety of ways, from specifying simple prob-
abilities that certain groups will get a vaccine or stay home
from work or school when sick, to more sophisticated be-
havioral dynamics such as being influenced by concerns
over a spreading epidemic.

Implementation
Key features of FRED include:

e Realistic synthetic populations based on the US
Census Bureau’s Public Use Microdata (PUMS) data
and Census aggregated data. FRED is the first open-
source epidemic model designed to use the latest
synthetic US population developed by RTT [31].

o Highly modular, object-oriented software design to
support rapid adaptation to a wide variety of
infectious disease scenarios.

e Scalable and efficient simulation of large epidemics.
FRED can be run on a variety of computer platforms
from laptops to supercomputers, depending on the
size of the population being simulated. Simulations
of an influenza epidemic like the HIN1 pandemic in
a population of 1 million people takes less than two
minutes on a typical laptop computer.

e Multiple circulating strains can be simulated,
making it suitable for the investigation of virus
evolution, for example, antigenic drift or the
evolution of resistant strains.

e Flexible ways to specify agent health behavior and
decision rules. Agents in FRED may exhibit a
number of health-related behaviors involving
individual health decisions, such as staying home
when sick, accepting a vaccine or taking an anti-viral
drug. The FRED platform is designed to
accommodate a range of models of health behavior
and supports a variety of strategies to determine an
agent’s willingness to adopt a behavior [27].
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Synthetic population

FRED explicitly represents every individual in a specific
geographic region. For regions within the United States,
FRED uses the 2005-2009 U.S. Synthetic Population Data-
base (Version 2) from RTI International [31,32]. The syn-
thetic population used an iterative fitting method [33]
to generate an agent population from the US Census
Bureau’s Public Use Microdata files (PUMS) and aggre-
gated data from the 2005-2009 American Community
Survey (ACS) 5-year sample. The synthetic population
contains geographically located synthetic households and
household residents for the United States, as well as group
quarters locations and residents (for college dorms,
prisons, nursing homes, and military bases), schools and
assignments of students to schools, workplaces and as-
signments of workers to workplaces. Each household,
group quarters, school and workplace is mapped to a spe-
cific geographic location, reflecting the actual spatial dis-
tribution of the area and the distance travelled by
individuals to work or to school [34,35]. Each agent has
associated demographic and socioeconomic information
(e.g., age, sex, race, household income) and locations for
their activities (e.g., household, neighborhood, and pos-
sibly school or workplace). The number of elements for
each category in the synthetic population is shown in
Table 1.

The synthetic population closely matches the available
census data for the United States with high spatial reso-
lution. For example, the differences in the age of the
head of household by county are shown in Figure 1.
Overall the synthetic population differs from the ACS by
less than 1% on this measure. Further detailed compari-
sons are provided in [31]. To illustrate the level of detail
available for every county in the United States, Figure 2
shows various demographic distributions in the synthetic
population for Allegheny County, PA.

The 2005-2009 U.S. Synthetic Population (Version 2)
database is freely available, and synthetic populations are
currently available from RTI for every state and county
in the United States. Selected international locations,
including Taiwan and Thailand, are available upon re-
quest from the authors. Users may apply FRED to other

Table 1 Elements in US synthetic population used in
FRED based on 2005-2009 American community
survey (ACS)

Individuals and Number in US
interaction groups synthetic population
Persons 289,390,247
Households 112,595,578
Workplaces 10,696,738

Schools 129,329
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populations not included in the synthetic population
database by using the file formats specified in [32].

Discrete-time simulation

FRED performs a discrete-time simulation with time steps
of one day, for any number of time steps. On each simu-
lated day, each agent potentially interacts with the other
agents who share the same activity locations. For example,
school-age children in FRED interact with the same set of
classmates at the school during each school day. If an
infected agent interacts with a susceptible agent, there is a
possibility of transmitting a disease from the infected
agent to the susceptible agent. Each infection transmission
event is recorded, making it possible to evaluate the effect-
iveness of several possible control measures and the im-
pact on specific sub-populations. Agents may dynamically
alter their daily activities, for example, by traveling or by
deciding to stay home when sick.

The fixed simulation step of 1 day permits certain per-
formance optimizations regarding scheduling the daily ac-
tivities of agents and parallelizing the transmission of
infection within places attended by disjoint sets of agents.
The daily step size does not appear to be a severe limita-
tion for running simulations that encompass several years
for diseases with long latency periods, since the computa-
tion time per day depends primarily on the number of ac-
tively infectious individual on a given day. However, the
daily step size may be a limitation for diseases with ex-
tremely short latency and infectious periods, or the simu-
lation of short period (e.g. hourly) interventions.

Agent model

Each agent maintains a record of its demographic infor-
mation (e.g., sex, race, date-of-birth, current age, employ-
ment or school status, family income), health information
(e.g., current health status, list of infections, date of infec-
tion, level of symptoms, infectivity, susceptibility, immun-
ity status, at-risk status), locations for social activity
(household, neighborhood, and school or workplaces as
appropriate), and health-related behaviors (e.g., probability
of getting a vaccine or staying home when sick).

By default, the demographic features of agents in FRED
remain constant during a given simulation run. However,
some research questions may address epidemic dynamics
over many years (e.g, how will a pandemic affect the
population immunity over the next several years). To ad-
dress these questions, FRED includes as an option some
limited forms of dynamic agent demographics including
aging, births and deaths. Age-specific maternity and mor-
tality rate can be specified in external files. If dynamic
demographics is enabled, then an agent’s age may affect its
activity pattern (e.g., school or work status) as well as the
agent’s health status (e.g., eligibility for a vaccine). Children
that achieve school age are assigned to schools and adults
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Figure 1 County level agreement between synthetic population and the American Community Survey (ACS). (a) Number of US counties
with each percent difference in age of the head of household. (b) Mean and standard deviation over all counties of percentage differences by
age of the head of household.

reaching working age are assigned to workplaces based on
the attendance patterns in the agent’s neighborhood. New-
borns are assigned to the same household as their mother.
If an agent dies, it is removed from the population. Fur-
ther refinements to the dynamic demographics model, in-
cluding household recombination and migration patterns,
are under development.

Agents in FRED may exhibit a number of optional
health-related behaviors including staying home from
work or keeping a child home when sick, and accepting
a vaccine for oneself or for a dependent child. At each
time step, the action taken by an agent involves an inter-
action between the intention of the agent to perform the
behavior and one or more external conditions such as
the availability of a vaccine. In addition to describing an
agent’s intention as a simple probability as in previous
models, FRED includes optional additional mechanisms
for agent decision-making (Figure 3). As one example of
using this flexible decision-making framework, FRED in-
cludes an implementation of the Health Belief Model, in
which health behavior decisions are based on several

specific constructs including perceived susceptibility, se-
verity, benefits, and barriers [36]. These constructs are
implemented as FRED perceptions and are combined
into an agent-specific decision rule as described in [37].
The behavioral features of FRED are under active devel-
opment, but some initial results showing the importance
of behavioral heterogeneities within the population are
available [27], described in the Results section below.

Place model

FRED assumes that all disease-specific interactions
among agents occur in a specific place, and each
type of place represents a distinct environment for
the spread of infection. The FRED framework in-
cludes a generic Place class that can be instantiated
into subclasses as needed by the model developer for
a particular study. The default types of places in
FRED include households, neighborhoods, schools,
and workplaces, but these are not intended as an ex-
haustive list of places that may be important sites of
infection. Neighborhoods are defined on a grid with
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Household Size Age

Race Income

Figure 2 Demographic features in Allegheny County synthetic population. (a) Overall population density in Allegheny County. (b) Spatial
distribution by household size, age of householder, race of householder, and household income.
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Figure 3 Mechanisms for agent-specific health decision-making
in FRED. Agents can query the information layer to assess, for example,
the current incidence, resulting in a perception (“how susceptible am | to
the disease?”). Perceptions can be used by a behavior change model
that determines whether to change the agent's intention to perform the
health-related behavior. These features permits the FRED developer to
investigate a wide variety of alternative health behavior change models,
including the Health Belief Model [36,371.

1 km square cells. Agents tend to spend their neigh-
borhood activities within their home neighborhoods,
defined as the cell in which the agent’s household is lo-
cated, but agents may also visit other neighborhood
during a given day, according to a modified gravity
model. FRED also provides optional classrooms (small
mixing groups within a given school) and offices (small
mixing groups within a given workplace). Non-
workplace contacts in workplaces (e.g., customers) are
not currently supported, but will be included in a fu-
ture version of the framework.

Depending on an assigned activity profile (for ex-
ample, student, worker, retiree, etc.), each agent
maintains a default daily schedule of places that the
agent visits on a regular basis (e.g., the agent’s
household, neighborhood, school or workplace).
Agent may visit different places depending on the
day of the week, the time of year, or ad hoc travel
plans. As in previous models [5-12], schools are
closed on weekends and during scheduled summer
holidays. Similarly, most workers do not visit their
workplaces on weekends. However, some workers are
designated as weekend workers, and they continue
to visit workplaces on weekends. To reflect weekend
schedules of schools and workplaces, the number of
neighborhood contacts is increased by 50% on week-
ends [12].
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Disease model

The FRED framework supports the circulation in the
population of one or more infectious diseases. Each dis-
ease is specified by a set of natural history, contact and
transmission parameters (Table 2). The default distribu-
tion includes disease parameters for pandemic influenza
derived from previously published influenza models [12].
All parameters are in Table 2 are user-modifiable based
on the specific disease being modeled.

For a given agent, an infection is assumed to follow a
user-specified temporal pattern, with the agent typically as-
suming the standard S-E-I-R pattern of susceptible, exposed
(infected but not infectious to others), infectious, and recov-
ered (or removed) states. It is also possible to specify the
rate at which agents lose immunity after recovery. The dis-
tribution of the number of days spent in each state is speci-
fied by user-settable parameters. Thus disease patterns
such as S-E-I-R-S or S-E-I-S can be modeled. FRED sup-
ports multiple strains circulating in the same population.
The intensity and temporal trajectory of cross-immunity
among strains, as well as its dependence on the genetic or
antigenic distance between the strains, can be specified by
the user. A detailed, equation-based intra-agent infection
model is also available, so that the susceptibility, infectivity
and symptoms of an agent can depend on the details of an
agent’s exposure and treatment history. Other options,
such as extending the Intrahost class to support more
complex disease models, are described in the system
documentation.

If an agent is infectious on a given day, then any place
the agent visits during that day is considered a poten-
tially infectious location. The place-specific transmission
model is described in Figure 4. Susceptible agents can
only become infected at a potentially infectious location,
so interactions among agents at non-infectious locations
need not be simulated.

The rate of effective contacts (that is, the number of
transmission events per infectious individual) in a given
place depends on two place-specific parameters: the
expected number of contacts per infectious person per
day, and the probability that a contact transmits an in-
fection. The expected number of contacts per day de-
pends on the place type but not on the place size. For
example, students in a small school are assumed to have
the same number of contacts per day as students in a
large school. The place-specific transmission probabil-
ities depend on the ages of the agents involved. This
permits the model to reflect, for example, that an infec-
tious child in school is more likely to infect another stu-
dent than to infect a teacher, even if the infectious child
contacts both. By default these parameters are set as in
previous models [5-12]. If an infectious agent has mul-
tiple contacts with a given susceptible agent (for ex-
ample, as members of the same household or same



Table 2 User-modifiable disease-specific parameters

Parameter type

Parameter

Definition

Natural history parameters

Contact parameters

Transmission parameters

Days latent

Symptomatic rate

Days asymptomatic

Days symptomatic
Immunity loss rate
Mortality rate

Probability of staying home

Household contact rates
Neighborhood contact rates

School contact rates

Workplace contact rates

Transmissibility
Asymptomatic infectivity

Household transmission probability

Neighborhood transmission probability

School transmission probability

Workplace transmission probability

Discrete cdf for number of days between becoming exposed and becoming infectious

The probability of an infected person becoming symptomatic

Discrete cdf for number of days the agent is infectious but asymptomatic

Discrete cdf for number of days the agent is infectious and symptomatic

Rate at which a person loses immunity after recovering from infection

The probability of an infected person dying

The baseline probability that an agent stays home if the agent experiences a symptomatic infection.

The expected number of potentially infective daily contacts between an infectious agent and a
susceptible agent in a household. All contact rates are positive real numbers.

The expected number of potentially infective daily contacts between an infectious
agent and a susceptible agent in a neighborhood

The expected number of potentially infective daily contacts between an infectious agent and a susceptible agent in a school

The expected number of potentially infective daily contacts between an infectious agent and a
susceptible agent in a workplace.

The transmissibility of disease relative to an arbitrary baseline set by calibration
Multiplier for how infective an asymptomatic infected agent is, relative to an symptomatic agent

A table of probabilities that a potentially infective contact between an infectious agent and a
symptomatic agent in the same household actually results in an infection, given the age of the potential infector/infectee pair

A table of probabilities that a potentially infective contact between an infectious agent and a symptomatic agent occurring
in a neighborhood actually results in an infection, given the age of the potential infector/infectee pair

A table of probabilities that a potentially infective contact between an infectious agent and a symptomatic
agent occurring in a school
actually results in an infection, given the age of the potential infector/infectee pair

A table of probabilities that a potentially infective contact between an infectious agent
and a symptomatic agent occurring in a workplace actually results in an infection,
given the age of the potential infector/infectee pair

FRED includes natural history and transmission parameters for pandemic influenza as used in previous models [5-12]. Contact parameters were calibrated for the FRED synthetic population using the methods
described in [12]. For more details about these and other user-settable parameters, please see the FRED User Guide.
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Place-Specific Transmission Model:

for each infectious place P
for each disease D

visitors to place P

ito j

end contact
end infectious person i
end disease D
end place P

let Trans (D) = transmissibility factor for disease D
let NDC(P,D) = the number of daily contacts for disease D in place P
for each infectious person i visiting place P

let Infectivity(i) = infectivity of agent i

let Contacts(i) = Trans (D) * NDC(P,D) * Infectivity (i)
for each contact 1 .. Contacts (i)
pick a susceptible agent j from today’s susceptible

let Susceptibility(j) = the susceptibility of agent j

let Trans_prob(P,i,j) is the transmission probability from

let Infection_prob = Trans_prob(P,i,j) * Susceptibility(j)
If U(0,1) < Infection prob, then agent i infects agent j

Figure 4 Pseudo-code for the place-specific transmission model in FRED.

classroom), each such contact is considered as an inde-
pendent opportunity to transmit the infection.
Epidemics in FRED are initiated by seeding the popula-
tion with one or more infections. These infections may ei-
ther be assigned to members of the population selected
randomly, or restriction to sub-groups defined by an age
distribution or a selected geographical area. To account
for the impact of an epidemic in populations external to
modeled population, the user may specify a time-varying
schedule of cases that causes FRED to seed new infections
into the study area throughout the course of the epidemic.

Performance and scalability

Computational efficiency is an important concern when
modeling the potential interactions of millions of indi-
viduals. As in other large-scale epidemic models, FRED
obtains much of its efficiency by focusing its transmis-
sion kernel only on the active set of infectious individ-
uals and their interactions with susceptible individuals.
FRED adopts a few additional significant optimizations:

1. Since every disease transmission occurs within a
given place in FRED, we only apply the place-
specific transmission model (Figure 4) to potentially
infectious locations, that is, locations that are visited
by at least one infectious individual during the
current simulation day.

2. Once all potentially infectious locations are identified,
the transmission model can be applied to all such
locations of a given type in parallel. Simulating
transmission in parallel in all infectious locations of a
given type (e.g. all schools) ensures that no agent
occurs in two such locations at the same time (e.g. all
children attend at most one school). This avoids
potential timing issues that may arise if all infectious
locations were simulated in parallel.

3. FRED uses a shared memory multi-threaded parallel
model implemented with OpenMP, which allows

simulations on a quad-core computer with
hyperthreading (i.e., many current laptops) to run
approximately four times faster than with a purely
serial implementation.

FRED requires between 750 and 1000 megabytes of
memory per million simulated individuals. The exact
amount of memory required depends on the demo-
graphic and geographic characteristics of the synthetic
population, as well as the severity of the simulated
epidemic. Simulations of an influenza spread like the
HIN1 pandemic in a population of 1 million people
takes less than two minutes on a typical dual-core lap-
top computer but the runtime will vary depending on
the number of individuals infected during the epidemic
and depending on which optional features are selected.
On the supercomputer Blacklight at the Pittsburgh Super-
computer Center (an SGI Altix UV shared-memory archi-
tecture with up to 16 TB of shared memory), a simulated
pandemic over the entire U.S. population requires ap-
proximately 200GB of memory and takes approximately
4 hours using 16 threads.

The synthetic populations for individual states and the
District of Columbia range in size from approximately
600,000 individuals for Washington, DC to over 30,000,000
individuals in California. To demonstrate how FRED scales
with population size, we performed FRED simulations of
the 50 states and the District of Columbia using default in-
fluenza parameters and no intervention. Figure 5 shows
that runtime scales linearly over two orders of magnitude
in population size. Given FRED’s memory requirement of
about 750 MB to 1GB per million agents, 30 million agents
(e.g., California) can be simulated on a workstation with
about 24 GB of memory.

Implementation details
FRED is written in the C++ programming language and
is released under the BSD 3-Clause Open Source License
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FRED Runtime on 50 States
One Influenza Season, RO = 1.4
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Figure 5 Runtime in seconds as a function of population size
(in millions of agents), in log-log scale. Runtime is based on
simulation of one influenza season in each of the 50 states and the
District of Columbia. The states marked are WY (pop. approx. 500 K),
PA (pop. approx. 11.8 M) and CA (pop. approx. 33.6 M). Observed
runtimes were approximately 32.4 seconds per million individuals
over the entire range of population sizes tested. Runs were
performed using 16 threads on a 12-core Mac Pro with 64 GB of
RAM, running at 2.93 GHz.

(http://opensource.org/licenses/BSD-3-Clause). The current
distribution, available in Additional file 1, includes the
FRED source code, documentation with installation in-
structions, tutorials on using the software, and detailed
descriptions of all the configuration parameters. The
documentation also describes the programming model
and includes source level documentation and other de-
tails for developers who may be interested in extending
the FRED framework for their own use.

The primary output file contains one line for each simu-
lation day of the run, displaying a large selection of output
variables. Optional additional files record the infection his-
tory of each infected individual, including the identity of
the infecting individual, the place of infection and other
details. The documentation describes the formats of the
output files and how to modify the source code to include
other variables if desired. FRED includes plotting scripts
that display time series for any selected output variables.

FRED is distributed with sample synthetic populations,
including Allegheny County (Pittsburgh), PA. Synthetic
populations for other regions are available online as part of
the 2005-2009 U.S. Synthetic Population (Version 2) [31].
Version 2.2.1 of FRED was used to produce the results in
this paper. The latest version of the FRED distribution is
available online at fred.publichealth.pitt.edu.
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Results

Effects of schools closures during an influenza pandemic
To compare the current version of FRED with our previ-
ously published models, we reproduced studies from [6]
that evaluated the potential effectiveness of alternative
school closure policies during a pandemic influenza in Al-
legheny County, Pennsylvania. In particular, we considered
policies that closed a given school when a number of sick
students were observed at that school. The FRED software
distribution includes a parameterization for pandemic in-
fluenza as used in previous models [5-12]. As described in
detail in [12], place-specific contact parameters were cali-
brated using a 30—70 rule [3] in which 30% of all transmis-
sions are assumed to occur in the household, 33% in the
general community and 37% in schools and workplaces,
and the fraction of transmissions that occur in schools is
twice of those that occur in workplaces. The system was
calibrated to reproduce a pandemic with a 50% Attack
Rate (AR) in a completely susceptible population while
satisfying the 30-70 rule. The baseline model assumed
that 50% of sick individuals withdraw to their home and
do not interact with anyone outside of the household, con-
sistent with previous models [5-12],

In this study, a given school was closed when the num-
ber of sick children at that school reached a trigger value
(fixed at 10 for this example). We compared the effects of
varying the duration of the school closure once it was ini-
tiated at each school. Specifically, the duration of school
closure was varied from 2 to 8 weeks, and once schools
reopened, they did not close again. Figure 6 shows the
daily incidence (number of new infections) for each sce-
nario. Note that the curves for all school closure scenarios

FRED: Allegheny County
Influenza with RO = 1.5
Effects of School Closure on Incidence
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Figure 6 Daily incidence curves for FRED pandemic influenza
model under five school closure scenarios. The baseline scenario
assumed no school closures. For the other scenarios, individual schools
in Allegheny County are closed the next day after 10 symptomatic
students attended the school. The duration of the closure varied from
2 to 8 weeks. Regardless of the duration of the school closure, a
secondary epidemic peak occurs when all the schools reopen.
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are essentially identical through the first 5 weeks of the
epidemic, at which time the scenarios with shorter school
closure durations begin to reopen schools. It can be ob-
served that for all school closure policies, the epidemic
temporarily abated when schools closed, but peaked again
once the schools had reopened. The resulting attack rate
(i.e. the total percentage of people that became infected
through the course of the epidemic) is shown in Figure 7.
While the daily incidence temporarily declined during the
period corresponding to school closures, the final attack
rate was similar for all scenarios, reflecting the resurgence
of the epidemic once schools reopen. These results were
consistent with our previously published model [6], al-
though some details differed due to changes in the syn-
thetic population model.

Simulation of epidemics on all US counties

To illustrate the effect of regional differences on epidemic
dynamics, we downloaded the synthetic population files for
every county in the US and performed a FRED simulation
of a baseline pandemic influenza epidemic in each county
using the default parameters as discussed above. By using
the same transmission parameters for all counties, we can
see some of the effects of local heterogeneities in the popu-
lation mixing patterns across the US. As expected, we
observed a range of resulting attack rates for the 3142
counties tested (Figure 8). The mean attack rate (using 20
independent runs per county) for all counties was 48.4%
(std. dev. 6.7). Counties with extremely small populations
exhibited the extreme values for attack rate, with a mini-
mum attack rate of 6.6% (for Catron County, NM; pop.
3202) and a maximum attack rate of 76.8% (Wade
Hampton Census Area, Alaska; pop. 7203), perhaps

FRED: Allegheny County
Influenza with RO = 1.5
Effects of School Closure on Attack Rate
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Figure 7 Infection attack rates for five school closure scenarios.
The attack rate is significantly lower during the period
corresponding to school closures, but the final attack rate is similar
for all scenarios, reflecting the resurgence of the epidemic once
schools reopen, as in [6].
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showing the particularly strong effects of contact pat-
terns in small populations. However, even among coun-
ties with populations over 500,000 a wide range of
attack rates were observed, from a minimum of 37.9%
for San Francisco County, CA (pop. 682,007) to a max-
imum attack rate of 68.0% for Hidalgo County, TX
(pop. 701,751). These results suggest that health offi-
cials may want to consider the likely effect of interven-
tions in the context of the local population structure.
To encourage further exploration of these simulation re-
sults, we have made FRED simulations of US counties
available at fred.publichealth.pitt.edu. A user can browse
thousands of previously run simulations (Figure 9), or run
a new FRED influenza simulation with other combinations
of epidemic parameters and control measures. In addition
to incidence, prevalence and attack rate curves, the user
can visualize results via maps and movies showing the epi-
demic dynamics for the given location via the GAIA
webservice [Additional file 2]. Web users can also down-
load FRED output data and perform their own analysis.

Health-related behaviors and policies

A recent article [27] showed the possibilities for using
FRED to investigate the impact of employment-related
health policies on the health of both the workers dir-
ectly involved and on the general population during an
influenza pandemic. In this study, agents in FRED were
assigned a probability of staying home based on the
available of paid sick days (PSD) at their workplace.
Based on data from the US Bureau of Labor Statistics
[38], the model assumed that employees had access to
PSD depending on the size of their workplace and that
72% of employees who had access to PSD and 52% of

Attack Rate by County Population Size
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Figure 8 Infection attack rate for 3142 counties in the United
States, using FRED’s baseline pandemic influenza transmission
parameters. The plot shows the mean attack rate for each county

over 20 stochastic simulations. The attack rate displays significant

heterogeneity across US counties.
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those without PSD stayed home when ill with influenza.
The average amount of days off from work was also set on
the basis of an observational study [39]. Simulations for
Allegheny County, PA, showed that a large proportion
(72%) of the workplace attack rate was due to exposure to
other employees engaging in presenteeism, defined as go-
ing to work when symptomatic. It was also shown that
providing universal PSD to all employees reduced work-
place infections by 5.86%, with larger reductions in infec-
tion occurring in small workplaces (with 2—49 employees)
than in large workplaces (with 500 employees or more).
Finally, the results showed that providing one or two add-
itional “flu days” (allowing employees with influenza to
stay home) reduced workplace infections by about 25%
and 39%, respectively. This study illustrates the import-
ance of considering heterogeneities in the health-related
behavior of individuals and in the workplace environments
when considering the population-level impact of alterna-
tive policy interventions.

Discussion

FRED simulations suggest that differences in popula-
tion structure, spatial distribution, and other local fac-
tors can produce significant differences in the spread
on infection disease among the counties in the U.S. We
believe that these examples illustrate some of the
advantages inherent in agent-based models that use
data-driven population models, compared to simpler
compartmental models that neglect heterogeneities
present in real populations.

Several other epidemic simulation programs have been
made available in open source form, including FIUTE [40],
EpiFire [41], GEM [42] and GSAM [43]. We believe that
FRED offers an attractive combination of features that
make it a valuable additional to the research community,
including:

o A free, open source license

e Use of realistic, open-access, census-based synthetic
populations

e Scalability from laptops to supercomputers

e Highly efficient simulation with populations up to
hundreds of millions of agents

e An interface with the GAIA visualization system
(http://gaia.psc.edu)

e Support for multiple circulating strains within the
population, making it suitable for the investigation
of virus evolution, for example, antigenic drift or the
evolution of resistant strains.

FRED is under active development, and several additional
features are planned for future versions that will extend its
value as a tool for public health planning, including:
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o Additional health-related behavior models, supporting
the further study of how human behavior impacts
potential public health control measures, and how
health-related behaviors change over time.

e Long-term dynamic demographics of the agent
population, such as migration patterns and household
changes such as marriages and divorce, enabling the
study of long-term health behavior patterns as well as
chronic diseases such as tuberculosis.

e Vector-borne diseases, including dengue and malaria.

e A more flexible simulation time step.

e Automated workflows for advanced probabilistic
sensitivity analysis [44].

In addition to the FRED web site, we have created an
auxiliary tool called FRED Navigator [45] that allows the
user to explore the effects of changing simulation pa-
rameters by interactively browsing through a database of
simulation results. FRED Navigator is aimed at making
FRED a practical tool for the public health user and a
teaching tool for students in public health. We invite in-
terested parties to contribute to the development of
FRED and to extend its use as a tool for public health
decision-making, research and education.

As with any model, users should take appropriate cau-
tions to understand the limitations of FRED. Limitations
of FRED include stochastic effects that limit the accuracy
of the synthetic population especially in regions with very
small populations [32], possible artifacts due to the se-
lected time step resolution (one day), simplifying assump-
tions about travel patterns (gravity model), and the fact
that estimates of contact rates and transmission probabil-
ities are necessarily imperfect, even if based on estimates
from the literature. Models created with FRED are sto-
chastic, so results may vary from run to run, and some
events, especially early in an epidemic, may depend on
random choices such as the identity of the initial cases.
Understanding the scope of variability in complex models
such as FRED is an active area of research [44-46]. FRED
supports the process of uncertainty analysis by providing
workflow management scripts for setting up parameter
sweeps and performing local sensitivity analysis.

Conclusions

FRED (a Framework for Reconstructing Epidemic Dynam-
ics) is a freely available open source epidemic modeling
platform based on several previously developed influenza
models. FRED simulates epidemics within a census-based
synthetic population that reflects the specific population
characteristics of a given region, including spatial distribu-
tion, race, age, and household income, along with realistic
household, school, and workplace contact networks. FRED
allows the flexible specifications of disease characteristics,
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intervention strategies, and a variety of health-related be-
haviors. These features make FRED a valuable tool for
public health planners to explore possible epidemic sce-
narios in a specific jurisdiction and to evaluate the possible
effects of interventions such as vaccination programs and
school closure policies. We hope that the availability of
FRED will contribute to the further development of mod-
eling tools for public health decision support. We particu-
larly welcome suggestions from the user community on
ways to make FRED a more useful tool for planning public
health responses to epidemics.

Availability and requirements

Project name: FRED

Project home page: http://fred.publichealth.pitt.edu
Operating system(s): OS X, Linux, Windows (under
Cygwin)

Programming language: C++, Python and Perl.

Other requirements: Optional plotting features require
Gnuplot.

License: BSD Open Source License

Any restrictions to use by non-academics: None.

Additional files

Additional file 1: FRED Distribution Version 2.2.1. This file contains
the FRED distribution, including source files, installation instructions,
required input files, and documentation. Unpack the file and see the file
FRED/README txt for further installation instructions.

Additional file 2: Quicktime movie. GAIA Visualization of FRED
simulation of Allegheny County. This file contains a Quicktime movie
showing the prevalence of influenza in Allegheny County resulting from
a FRED simulation calibrated to an RO of 2.0. The movie was produced by
the GAIA visualization tool (http://gaia.psc.edu). The FRED distribution
contains scripts that automate the generation of GAIA visualization from
FRED simulations.
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