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Abstract

Background: Emergency medical service (EMS) data, particularly from the emergency department (ED), is a
common source of information for syndromic surveillance. However, the entire EMS chain, consists of both out-of-
hospital and in-hospital services. Differences in validity and timeliness across these data sources so far have not
been studied. Neither have the differences in validity and timeliness of this data from different European countries.
In this paper we examine the validity and timeliness of the entire chain of EMS data sources from three European
regions for common syndromic influenza surveillance during the A(H1N1) influenza pandemic in 2009.

Methods: We gathered local, regional, or national information on influenza-like illness (ILI) or respiratory syndrome
from an Austrian Emergency Medical Dispatch Service (EMD-AT), an Austrian and Belgian ambulance services (EP-AT,
EP-BE) and from a Belgian and Spanish emergency department (ED-BE, ED-ES). We examined the timeliness of the EMS
data in identifying the beginning of the autumn/winter wave of pandemic A(H1N1) influenza as compared to the
reference data. Additionally, we determined the sensitivity and specificity of an aberration detection algorithm (Poisson
CUSUM) in EMS data sources for detecting the autumn/winter wave of the A(H1N1) influenza pandemic.

Results: The ED-ES data demonstrated the most favourable validity, followed by the ED-BE data. The beginning of the
autumn/winter wave of pandemic A(H1N1) influenza was identified eight days in advance in ED-BE data. The EP data
performed stronger in data sets for large catchment areas (EP-BE) and identified the beginning of the autumn/winter
wave almost at the same time as the reference data (time lag +2 days). EMD data exhibited timely identification of the
autumn/winter wave of A(H1N1) but demonstrated weak validity measures.

Conclusions: In this study ED data exhibited the most favourable performance in terms of validity and timeliness for
syndromic influenza surveillance, along with EP data for large catchment areas. For the other data sources performance
assessment delivered no clear results. The study shows that routinely collected data from EMS providers can augment
and enhance public health surveillance of influenza by providing information during health crises in which such
information must be both timely and readily obtainable.
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Background
Influenza surveillance systems monitor the occurrence
and progress of the disease so as to support influenza
management during epidemics. Clinical and virological
influenza surveillance systems have been established in
the European member states [1,2], and the European
Centre for Disease Prevention and Control (ECDC) ag-
gregates data regarding influenza occurrence from these
systems to enhance monitoring and reporting of disease
trends across Europe [3].
Syndromic surveillance systems based on immediate,

usually electronically available, routine health information
are increasingly being added to traditional surveillance
structures (i.e., clinical / sentinel or virological) to establish
more comprehensive surveillance or epidemic intelligence
systems [4,5]. Typically based on the use of existing rou-
tine data, the systems do not require new data collection
mechanisms. However, since the data are not being col-
lected primarily for surveillance purposes, the provided
information covers only signs and symptoms and contains
no clinically verified or laboratory-confirmed diagnoses
[5]. Due to real-time or near real-time data availability,
syndromic surveillance systems are designed to enhance
the identification of immediately occurring or out-of-sea-
son health threats, such as pandemic influenza. Existing
syndromic surveillance approaches apply indicator-based
components, such as data from emergency departments
[6,7], emergency medical dispatch centres [8,9], and tele-
phone help lines [10,11]; as well as information on school-
absenteeism [12,13] or over-the-counter drug sales of an-
algesics [14]. The data may be even broader, systems that
apply event-based information use information from
media sources or web queries related to influenza [15,16].
European and international syndromic surveillance sys-

tems based on event-based health information exist. The
Directorate General for Health and Consumers of the
European Commission (EC), for example, directs the Med-
ical Information System (MedISys), which monitors the
international media for general disease occurrence informa-
tion but also specifically for influenza activity [17]. Routine
syndromic surveillance systems based on indicator-based
components, however, are scarce and are, at least in
Europe, the individual efforts of single regions or countries.
A European study to identify commonalities and good
practice in national or regional syndromic surveillance ac-
tivities has been lacking for a long time and has now been
established by an EC co-founded project [18]. The analysis
of the potential for a European-wide application of emer-
gency medical service (EMS) data for indicator-based syn-
dromic influenza surveillance is missing so far [19].
Moreover, existing national and regional EMS data-

based syndromic surveillance systems do not focus on the
entire chain of available data. Data covering the entire
EMS chain consists of out-of-hospital emergency medical
dispatch (EMD) information on signs and symptoms typic-
ally described by laypeople calling for an ambulance; am-
bulance service (EP) data on the initial diagnostic findings
during examination at the emergency scene by paramedics
or emergency physicians; and in-hospital information from
nurses or physicians at the emergency department (ED)
covering the patient’s main complaints or the initial diag-
nostic findings during the patient’s treatment in the ED
[20]. Typically, however, EMS data-based syndromic influ-
enza surveillance systems focus mostly on ED data, only a
few include data from the EMD, and to our knowledge, EP
data is not yet exploited by any syndromic influenza sur-
veillance system. Thus, little is known about the differences
in the performance of syndromic influenza surveillance
based on the three levels of available emergency medical
service data and the applicability of this health information
for syndromic influenza surveillance in various European
countries.
To evaluate the performance of a common syndromic

influenza surveillance approach based on the EMD, EP
and ED data from different European regions during the
autumn/winter wave of the A(H1N1) influenza pandemic,
we focus on the validity components, sensitivity and speci-
ficity, as well as on timeliness measures as described by
Buehler et al. [21]. The validity and timeliness assessment
is performed retrospectively against traditional influenza
surveillance sources.

Methods
Time period of the analysis
In Europe, the autumn/winter wave of the pandemic A
(H1N1) influenza began around week 43 of 2009, earlier
than the beginning of the normal seasonal influenza
cycle. The ECDC registered the modal peak of the au-
tumn/winter wave at approximately week 48 in Europe
[22,23]. In this study, the validity and timeliness of syn-
dromic surveillance data were assessed during the time
period between week 36 (start 30.8.) to week 52 (end
31.12.) in 2009 (N = 17 weeks; N = 123 days). Due to
limited data availability, the first weeks of 2010 were not
analysed. However, as reported by ECDC, most of the
disease burden in regard to the pandemic A(H1N1) in-
fluenza occurred by the end of 2009 [22,23].

Data sets
Syndromic surveillance data
Data for this study were retrieved during the SIDARTHa
project on emergency data-based syndromic surveillance
[24]. The SIDARTHa project group consisted of EMS in-
stitutions from 12 European countries. Three partner in-
stitutions, designated as test sites and consisting of EMD
centres, ambulance services (EP), or EDs delivered in total
five data sets from a local, regional, or national level for
this study. The number of specific EMS data sources per
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country used in this study is not related to the general
availability of these data in Europe.
The city- or district-level data sources included ambu-

lance service data for the district of Kufstein in Austria
(EP-AT) and emergency department data for the city of
Leuven in Belgium (ED-BE) and Santander in Spain (ED-
ES). Regional emergency call data were provided by the
Dispatch Centre Tyrol in Austria (EMD-AT), which at that
time covered three out of nine districts in Tyrol. The am-
bulance service of Belgium (EP-BE) provided national data.
For the sake of readability, we refer in the following text
to the composite abbreviations of each data source (e.g.,
EMD-AT), including information on the respective emer-
gency medical service (e.g., EMD for Emergency Medical
Dispatch) and the country code (e.g., AT for Austria). The
country code does not imply that the data sources are rep-
resentative for the whole countries. More specific infor-
mation on the properties of each data set can be found
in Table 1.
All data sets included anonymous health information

on individual patients who sought the respective EMS.
The data were available on a daily scale.

Reference data
Reference data were retrieved from regional or national
clinical (sentinel) influenza surveillance systems. The data
included weekly reports from physicians, usually general
practitioners (GP), regarding the number of patients treated
Table 1 Properties of the syndromic surveillance data sets

Geographical specification of the data
source

Abbreviation
of the data
source

Data source Country Region City/District

EMD-AT Emergency
Medical
Dispatch

Austria Tyrol data
source covers 3
of 9 districts in
Tyrol

Innsbruck city
Innsbruck
district, Kufste
district

EP-AT Emergency
Physician
service
(ambulances)

Austria Tyrol Kufstein distric

EP-BE Emergency
Physician
service
(ambulances)

Belgium

ED-BE Emergency
Department

Belgium Flemish Brabant Leuven

ED-ES Emergency
Department

Spain Autonomous
Region
Cantabria

Santander

*Baseline period = period which was used for the adjustment of the aberration dete
for ILI and were suitable to assess the course and spatial
distribution of influenza [23]. Since the autumn/winter
wave of the A(H1N1) influenza pandemic 2009 began
sooner than the normal seasonal cycle, the Austrian
sentinel system for the Tyrol region was not active. As a
substitute, data on the number of documented sick-
leave cases with acute respiratory illness (ARI) were re-
trieved from a major Tyrolean health insurance (Tiroler
Gebietskrankenkasse). This health insurance covers ap-
proximately 75% of the Tyrolean population [25].
The reference data included weekly case numbers reg-

istered at the time of the case occurrence. The proper-
ties of the respective reference data sources are given in
Table 2. The table also includes information on the re-
porting delay between case occurrence and data avail-
ability at the respective public health authority.
The onset of the A(H1N1) influenza pandemic was deter-

mined by pre-defined thresholds as specified by the re-
spective public health authorities: The Belgian reference
data, defined the threshold as more than 141.37 ILI cases
per 100,000 inhabitants treated by sentinel GPs per week
[26], while the Spanish sentinel system for the Autonomous
Region of Cantabria determined a threshold at more than
71 ILI cases per 100,000 inhabitants in GP practices per
week. Case occurrence of less than 71 ILI cases per 100.000
inhabitants resulted in a temporary cessation in the epi-
demic period in 2009 (week 48) in the Autonomous Region
of Cantabria. Since no threshold was determined for the
Population served (approx.) Data
provider

Baseline
period*

,

in

380,000 Dispatch
Centre Tyrol

1/2005-12/2008

Except cases
from December
to March each
year.

t 99,000 Dispatch
Centre Tyrol

1/2006-12/2008

Except cases
from November
to March each
year.

10,500,000 Ministry of
Health,
Belgium

3/2009-8/2009

a. 91,000 (Leuven) b. 1,000,000
(reference hospital for the
region Flemish Brabant)

University
Hospital
Leuven

3/2009-8/2009

a. 300,000 (Santander) b.
580,000 (reference hospital for
the Autonomous Region
Cantabria)

University
Hospital
Marqués de
Valdecilla

8/7/2009-30/8/
2009

ction algorithm (Poisson CUSUM).



Table 2 Properties of the reference data

Influenza pandemic according to
reference data in 2009

Reference
data for…

Reference data source Geographical
level

Reporting delay* Start week Peak
week

Duration
(weeks)

Duration
(days)

EMD-AT†,
EP-AT†

Information on sick leave due to acute
respiratory infections from a major Tyrolean
health insurance.

regional information for week x
available on week x + 1

44 47 9 67$

(Tyrol, Austria)

EP-BE, Notified influenza cases of the sentinel
general practitioner system.

national information for week x
available on week x + 3

40 44 10 70

ED-BE (Belgium)

ED-ES Notified influenza cases of the sentinel
general practitioner system.

regional information for week x
available on week x + 3

41 (period 1) 43 8 56

(Autonomous
Region Cantabria,
Spain)

49 (period 2)

*week: Monday (day 1), …, Sunday (day 7).
†The course of the autumn/winter wave was derived from regional data of the Tyrolean health insurance; the start week of the autumn/winter wave was derived
from national data [27].
$last week of 2009 (week 52) contained 11 days.
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Austrian reference data, we applied the official national
reported beginning of the A(H1N1) pandemic in Austria,
which was based on the number of laboratory-confirmed
A/H1N1 influenza cases. In this report, a reference on the
determination of the beginning of the epidemic (e.g., a pre-
defined threshold) is missing [27]. A summary of the refer-
ence data properties regarding the autumn/winter wave is
exhibited in Table 2.
Variables
The main variables were the date of the emergency oc-
currence and the information on the health status of the
emergency cases. The day on which the emergency case
occurred was used to identify the day-of-the-week vari-
ation in the data sets.
The European Influenza Surveillance Network defines

relevant health information for ILI for clinical surveillance
and recommends a combination of influenza symptoms as
an ILI case definition [28]. Since the study presented in
this paper is based on routine information from EMS pro-
viders, it could use only a set of single pre-defined major
symptoms reported by the emergency caller, or chief com-
plaints or a working diagnosis identified during the admis-
sion at the ED or provided by the ambulance staff at the
emergency scene. As identified in previous studies, these
broad-symptom categories or working diagnoses exhibit a
moderate sensitivity in meeting a clinically confirmed in-
fluenza diagnosis [29] or correspondence to the epidemic
curves of the clinical sentinel surveillance system [30].
For the respective data sets in this study, health informa-

tion was available as single codes from the Advanced Med-
ical Priority Dispatch System (AMPDS [EMD-AT]), the
International Classification of Diseases ((ICD-9 [EP-BE];
ICD-10 [EP-AT]), free-text information regarding the chief
complaint and/or the working diagnosis (ED-BE), and re-
gional chief complaint triage codes (ED-ES) (Table 3).
Relevant codes for monitoring ILI were defined for each

EMS coding system based on available literature and the
expertise of EMS experts from the SIDARTHa consortium
(Table 3). Since the health information derived from the
AMPDS codes (EMD-AT) was not specific enough to dif-
ferentiate between respiratory syndrome and ILI, we
analysed the respiratory syndrome in this data set. In the
ED-ES data, the ILI case definition was designed as a fixed
list of combined chief-complaint triage codes comparable
to the ILI definition contained in the reference data set of
the Spanish sentinel surveillance system (Autonomous Re-
gion Cantabria) (Table 3).
The share of AMPDS, ICD-9 or ICD-10 codes pre-

sented in Table 3 indicates the structure of ILI or re-
spiratory syndrome in the syndromic surveillance data
sources. In the EMD-AT data, respiratory syndrome
cases were coded primarily as severe breathing prob-
lems. ILI cases in ICD-coded data sets (EP-AT, EP-BE)
mostly received a working diagnosis of pneumonia or
fever. The exploitation of a broad range of free text
items, which allowed different writings and short forms,
made it impossible to describe the structure of ILI in
ED-BE data.
Cases to which respiratory syndrome or ILI was

assigned were aggregated per week and per day for fur-
ther analysis.

Statistical analysis
Characteristics of syndromic surveillance data
The characteristics of the individual syndromic surveil-
lance data sources during the respective baseline period
and the test period (week 36/2009 to week 52/2009)
were analysed using general descriptive statistics. The



Table 3 Health information used for respiratory syndrome and influenza-like illness coding and respective code
distribution in 2009

Data
source

Syndrome Health information codes Code
distribution

2009

EMD-AT respiratory
syndrome

AMPDS
v12.0

Boolean operator : OR N %

6C1 Breathing problems - Abnormal breathing 465 26.9

6C1A Breathing problems - abnormal breathing + asthma 71 4.1

6D1 Breathing problems - Not alerting 750 43.3

6D1A Breathing problems - not alerting + asthma 230 13.3

6D2 Breathing problems - Difficulty in speaking between breaths 22 1.3

6D2A Breathing problems - difficulty in speaking between breaths + asthma 4 0.2

6D3 Breathing problems - changing colour 154 8.9

6D3A Breathing problems - changing colour + asthma 31 1.8

6D4 Breathing problems - clammy - -

6D4A Breathing problems - clammy + asthma - -

26A4 Sick person - Fever/chills 4 0.2

26O26 Sick person - Sore throat (without difficulty breathing or swallowing) - -

Total 1731 100.0

EP-AT ILI* ICD-10 Boolean operator : OR

J00 Acute nasopharyngitis [common cold] 1 1.6

J02 Acute pharyngitis (includes sore throat) - -

J04 Acute laryngitis and tracheitis 3 4.7

J06 Acute upper respiratory infections of multiple and unspecified sites 8 12.5

J09 Avian Influenza - -

J10 Influenza due to other identified influenza virus 1 1.6

J11 Influenza, virus not identified 8 12.5

J16 Pneumonia due to other infectious organisms, not elsewhere classified 3 4.7

J18 Pneumonia, organism unspecified 28 43.8

R05 Cough 3 4.7

R50 Fever of other and unknown origin 9 14.1

Total 64 100.0

EP-BE ILI* ICD-9 Boolean operator : OR

460 Acute nasopharyngitis [common cold] 22 1.2

462 Pharyngitis, acute - -

464 Acute laryngitis and tracheitis - -

464.0 Acute laryngitis - -

464.1 Acute tracheitis - -

464.2 Acute laryngotracheitis - -

465 Acute upper respiratory infections of multiple or unspecified sites - -

465.0 Acute laryngopharyngitis - -

465.8 Acute upper respiratory infections of other multiple sites - -

465.9 Acute upper respiratory infections of unspecified site - -

480.9 Viral pneumonia unspecified 56 3.0

488 Influenza due to certain identified influenza viruses - -

488.0 Influenza due to identified avian influenza virus - -
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Table 3 Health information used for respiratory syndrome and influenza-like illness coding and respective code
distribution in 2009 (Continued)

488.1 Influenza due to identified novel h1n1 influenza virus - -

487 Influenza - -

487.0 Influenza with pneumonia - -

487.1 Influenza with other respiratory manifestations - -

487.8 Influenza with other manifestations 109 5.9

486 Pneumonia organism unspecified 986 53.2

786.2 Cough 63 3.4

780.6 Fever and other physiologic disturbances of temperature regulation 618 33.3

Total 1854 100.0

ED-BE ILI* chief complaint or working diagnosis, Boolean operator : OR

free text including cough, muscle pain, flu, H1N1, sore throat, influenza, fever na† na†

Total 5681 100.0

ED-ES ILI* case definition, Boolean operator : AND

i) the appearance of sudden symptoms and at least one of the four general symptoms (fever or
slight fever (feverishness), headache, muscle pain, general malaise), and (ii) at least one of the
three respiratory symptoms (cough, sore throat, difficulty breathing), as well as (iii) the absence of
other diagnostic suspicion.

1127 100.0

Total$ 1127 100.0

*ILI = influenza-like illness.
†na = not applicable.
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selection of suitable baseline periods for the individual
data sources (Table 1) was driven by data availability and
a thorough descriptive analysis of variations in daily case
numbers per year and per month to ensure stability
(reported elsewhere [31]). Due to comprehensive data
availability in the Austrian data sets (EMD-AT and EP-
AT), we were able to exclude the spring and summer
period of 2009, during which the 2009 influenza pan-
demic started, from the baseline period of these data
sets. In the other data sets, limited data availability led
to the inclusion of these periods. Additionally, day-of-
the-week variation was analysed in the baseline data sets
employing Kruskal-Wallis test statistics (significance
level p < 0.05).

Aberration detection
Aberrations in the daily number of patients with respira-
tory syndrome or ILI during the test period (week 36/2009
to week 52/2009) were investigated using a one-sided cu-
mulative sum (CUSUM) aberration detection algorithm
for Poisson-distributed data [32] in combination with the
Fast Initial Response (FIR) mechanism [32,33]. The FIR
technique ensures that large CUSUM values do not inflate
subsequent values, thus controlling for an over-production
of signals. It also allows a head start of the algorithm to re-
trieve quicker signals [33]. The Poisson CUSUM algorithm
is based on the individual baseline mean from which the
reference value k, the head start value S0, and the thresh-
old value h are determined.
More specifically the reference value k was determined
by the following equation:

k ¼ μd−μað Þ= ln μdð Þ− ln μað Þð Þ
The acceptable process mean (μa) was set close to the

baseline mean (μd) as described by Lucas [34]. When k
was larger or equal to one, the value was rounded to the
nearest integer.
The daily Poisson CUSUM value was calculated as fol-

lows [34]:

SH;i ¼ max 0;Y i−k þ SH;i−1
� �

The threshold value h for the CUSUM algorithm and
the head start value S0 were retrieved from a table pro-
vided by Lucas [34]. Yi represented the daily number of
respiratory syndrome or ILI cases. A signal was pro-
duced whenever the daily CUSUM value SH,i was greater
than or equal to the respective threshold value h, indi-
cating a significant change in the time series. The re-
spective set-ups and threshold values for the Poisson
CUSUM algorithm per data set are listed in Table 4.
We accounted for significant day-of-the-week vari-

ation with a stratified application of the Poisson CUSUM
algorithm. If a day-of-the-week variation was evident,
the Poisson CUSUM was calibrated separately for each
stratum (Table 4). This calibrated algorithm was subse-
quently applied on the stratum-specific days during the
test period.



Table 4 Characteristics of the daily number of respiratory syndrome or influenza-like illness cases during baseline and
the test period (week 36 to week 52, 2009), test statistics on the probability distribution of daily counts, the
identification of day-of-the-week effects, and Poisson CUSUM parameters during individual baseline periods

EMD-AT EP-AT EP-BE ED-BE ED-ES

Respiratory syndrome ILI ILI ILI ILI

Period Baseline* Test† Baseline* Test† Baseline* Test† Baseline* Test† Baseline* Test†

Mean daily count 4.7 4.8 0.07 0.2 4.2 5.0 13.6 17.9 4.1 7.3

Standard deviation 2.2 2.1 0.3 0.5 2.1 2.5 4.0 6.0 3.0 8.0

95% Confidence Interval 4.6-4.9 4.4-5.5 0.05-0.09 0.2-0.3 3.9-4.5 4.5-5.4 13.0-14.2 16.8-19.0 3.3-4.9 5.9-8.7

Median daily count 5 5 0 0 4 5 13 18 3 5

Minimum daily count 0 1 0 0 0 1 5 5 0 0

Maximum daily count 15 12 2 2 10 14 27 34 15 36

Day-of-the-week effect yes no no no yes

evaluated by Kruskal-Wallis test p = 0.007 p = 0.43 p = 0.70 p = 0.19 p = 0.04

Mean daily count

Monday 4.7 0.08 4.1 14.6 2.7

Tuesday 4.4 0.08 4.0 12.3 4.9

Wednesday 4.4 0.03 3.9 12.5 5.5

Thursday 5.0 0.08 3.6 13.7 4.8

Friday 4.5 0.12 4.8 14.6 3.4

Saturday 4.7 0.08 4.3 13.2 5.5

Sunday 5.4 0.05 4.6 14.4 2.0

Poisson CUSUM calibration$

no day-of-the-week variation mean = 0.07 mean = 4.2 mean = 13.6

k = 1 k = 5 k =14

S0 = 1 S0 = 4 S0 = 10

h = 2 h = 7 h = 20

day-of-the-week variation

stratum 1 Sunday Sunday,
Monday

mean = 5.4 mean = 2.3

k = 6

S0 = 5 k = 3

h = 10 S0 = 3

h = 5

stratum 2 Monday-
Saturday

Tuesday-
Saturday

mean = 4.6 mean = 4.8

k = 5 k = 5

S0 = 4 S0 = 4

h = 7 h = 7

*baseline = baseline period for Poisson CUSUM calibration: EMD-AT: 1/2005-12/2008 (except December to March); EP-AT: 1/2006-12/2008 (except November to
March); EP-BE: 3/2009-8/2009); ED-BE: 3/2009-8/2009; ED-ES: 3/2009-8/2009.
†test = test period for validity and timeliness assessment; covers the autumn winter wave of pandemic A(H1N1) influenza in 2009 (week 36/2009 to
week 52/2009).
$Poisson CUSUM calibration: mean = baseline mean; k = reference value; S0 = head start value; h = threshold value.
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Timeliness
Three approaches were used to assess timeliness: (1) com-
parison of peaks in the time series of reference data and
syndromic surveillance data; (2) correlation of the time
series of reference data and syndromic surveillance data;
(3) comparison of signals generated by the Poisson
CUSUM aberration detection method in the respective
EMS data source against the beginning of the pandemic
as defined in the reference data [35]. Since availability
of reference data was only provided on a weekly basis,
EMS data was aggregated per week for peak comparison
and correlation analysis.
First, the epidemic peak periods (peak week) in EMS

and reference data were compared based on the times
series of the data sets during week 36 to week 52 in 2009.
Second, a cross-correlation function of weekly aggre-

gated EMS and reference data time series was calculated
for the period of week 36 to week 52 in 2009 [35,36]. The
cross-correlation function indicates the similarity of two
time series for different time lags, and this study was inter-
ested in the time lag that maximized the cross- correlation
function. A correlation was considered significant if the
upper boundary of the 95% confidence limit was crossed; a
significant correlation combined with a negative time lag
indicated that the epidemic curve of the syndromic surveil-
lance data source developed earlier than the curve in the
reference data, whereas, a significant correlation combined
with a positive time lag indicated that the epidemic curve
in the syndromic surveillance data sets developed later.
Third, timeliness was assessed by comparing the first

signal detected by the Poisson CUSUM algorithm in
each data source against the beginning of the official
pandemic period in the respective reference data source.
We counted the number of days from the Monday of
the first official week of the autumn/winter A(H1N1) in-
fluenza pandemic as outlined in the reference data to
the first day with a signal in the respective EMS data set.
[37] A second approach took into consideration the
amount of time required to collect and process the refer-
ence and syndromic surveillance data (reporting delay,
see Table 2). Days were counted from the day of data
availability in the reference data to the day after a
Poisson CUSUM signal occurred in the syndromic sur-
veillance data sources.

Validity assessment based on aberration detection
Since epidemic periods were indicated weekly in the ref-
erence data and aberrations in syndromic surveillance
data were indicated daily, a weekly and daily approach
was applied to the sensitivity and specificity calculations
to ensure a range of potential sensitivity and specificity
measures.
In the weekly approach sensitivity and specificity calcula-

tions were based on true-positive and true-negative flagged
weeks. A week was flagged as true-positive when an aber-
ration was detected on at least one day in a week that
belonged to the officially confirmed pandemic period in
the reference data. A true-negative week was flagged when
CUSUM gave no signal during a week that did not belong
to the official pandemic influenza period.
In the daily approach sensitivity and specificity calcula-

tions were based on true-positive and true-negative flagged
days that were in accordance with the officially pandemic
or non-pandemic periods respectively. The calculations
were performed similarly to the weekly validity calculations.
A false detection rate also was calculated, indicating

the proportion of false-positive flagged weeks or days to
all Poisson CUSUM-flagged weeks or days.

Software
The descriptive statistics and the correlation analyses were
performed with IBM SPSS Statistics Version 21.0 (IBM
Corp., Armonk, New York), and the CUSUM algorithm
was programmed in Microsoft Excel 2010 (Microsoft,
Redmond, Washington).

Results
The characteristics of the emergency data sets are pro-
vided for the baseline period of each data set and for the
test period (week 36/2009 to week 52/2009) (Table 4). The
mean daily number of cases was higher in all data sets
during the test period in 2009 than during the baseline
period. The daily occurrence of ILI cases was generally a
rare event in EP-AT data. The baseline periods were used
to determine the parameters of the Poisson CUSUM aber-
ration detection algorithm. Day-of-the week effects were
present in EMD-AT data (Sunday stratum, Monday to
Saturday stratum) and the ED-ES data (Sunday to Monday
stratum, Tuesday to Saturday stratum). Table 4 also pre-
sents the calibrations of the Poisson CUSUM parameters
for each data set.

Timeliness assessment
In Austria, the A(H1N1) reference data exhibited a peak
in week 47 (Figures 1a and b). However, due to the strong
variability in the EMD-AT data (Figure 1a) and the low
case numbers in the EP-AT data (Figure 1b), a similar
peak in these data sources could not be ascertained. Both
data sets also demonstrated no significant correlation with
the reference data (Table 5). Based on detected aberrations
by the Poisson CUSUM algorithm, we identified one sig-
nal in EMD-AT that coincided with the beginning of the
pandemic period in the reference data (Figure 1a, Table 5).
Since no aberrations were identified in the EP-AT data,
this approach was not viable.
In Belgium, the reference data peaked in week 44;

however, the weekly aggregated EP-BE (Figure 2a) and
ED-BE data (Figure 2b) peaked in week 43. This trend in
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timeliness was confirmed by the correlation analysis in
the EP-BE data, which showed a significant correlation
of 0.60 one week ahead of the reference data (Table 5).
No statistical confirmation could be achieved in ED-BE
data, which showed a non-significant correlation of 0.48
at time lag 0 (Table 5). The timeliness assessment based
on the first signal generated by the Poisson CUSUM al-
gorithm during the influenza pandemic as defined in the
reference data demonstrated a slightly different picture.
When taking the reporting delay of the data sets into
consideration the first signal of EP-BE data was retrieved
two days later than the reference data, while the signal
in the ED-BE data was retrieved eight days in advance
(Table 5, Figure 2b and a).
The Autonomous Region of Cantabria in Spain encoun-

tered the A(H1N1) influenza pandemic peak in week 43
whereas the ED-ES data peaked one week later in week 44
(Figure 3). This observation was confirmed by a significant
correlation of 0.89 at time lag +1 (Table 5). In the refer-
ence data of the Autonomous Region of Cantabria, the
pandemic paused for one week (week 48) and thus two
pandemic periods were available for timeliness assessment
based on the Poisson CUSUM algorithm, first during
week 41 to week 47 and second during week 49. This as-
sessment showed a delayed identification of the first
period (+11 days) and an earlier identification of the sec-
ond period (−8 days) (Table 5).

Validity assessment
Table 6 depicts sensitivity, specificity, and false detection
rate for each data set. The number of Poisson CUSUM
signals identified during the epidemic or non-epidemic



Table 5 Results of three timeliness methods for the identification of the start of the autumn/winter wave of the A
(H1N1) influenza pandemic (as reported by the reference data) with syndromic surveillance data in 2009

Data
source

Peak comparison Cross-correlation function First aberration detected by Poisson CUSUM

(weeks) (weeks) (days)

Without reporting delay+ With reporting delay+

EMD-AT na* not significant 0 −6

EP-AT na* not significant na* na*

EP-BE −1 −1 +10 +2

0.60

ED-BE −1 not significant 0 −8

ED-ES +1 +1 +19 (period 1) +11 (period 1)

0.89 0 (period 2) −8 (period 2)

*na = not applicable.
+reporting delay refers to the time needed for collecting and processing the data.

Rosenkötter et al. BMC Public Health 2013, 13:905 Page 10 of 14
http://www.biomedcentral.com/1471-2458/13/905
periods are also presented in Table 6 and are indicated
in the time series of Figures 1, 2 and 3.
The ED data sets showed the strongest potential for

correctly identifying the outbreak and non-outbreak pe-
riods (Table 6). The EP data sources exhibited promising
results for data encompassing the entire Belgium ambu-
lance services (EP-BE) over data for only one district in
Tyrol (EP-AT). The daily measurement of sensitivity
demonstrated a lower but similar pattern across the
assessed data sets. The false detection rate was highest
in the ED-ES and EP-BE data followed by ED-BE data.

Discussion
The autumn/winter wave of the A(H1N1) pandemic in-
fluenza in 2009 was used as a test case to evaluate a
common approach for indicator-based syndromic influ-
enza surveillance across various European countries and
EMS data sources. The highest validity was achieved by
ED data from local university hospitals (ED-ES and ED-
BE) followed by national data from the Belgian ambu-
lance service (EP-BE). The timeliness assessment results
indicate that detection of the beginning of the pandemic
influenza occurred approximately one week sooner than
in the respective reference data set in the ED-BE data
and two days later in the EP-BE data. For the other data
sources timeliness assessment delivered no clear results.

Emergency department data
ED data presented the strongest validity and timeliness in
this study. The only disadvantage was the delayed identifi-
cation of the beginning of the autumn/winter wave in the
ED-ES data. However, in this same data source the
Poisson CUSUM algorithm identified the second period
of pandemic influenza one week sooner than the Spanish
(Autonomous Region of Cantabria) reference data.
A comparable timeliness for ED data-based syndromic

influenza surveillance was identified by a study from
Cowling et al., that also applied the CUSUM algorithm
for aberration detection [37]. Plagianos et al. compared
ILI case numbers in EDs with case numbers in ambula-
tory care facilities and identified a more rapid developing
peak in ED data during the spring/summer wave of A
(H1N1) influenza in New York in 2009 [38]. This was
indicated in our study during the autumn/winter wave
in the ED-BE but not in the ED-ES data.
A study on seasonal influenza after the A(H1N1) influ-

enza pandemic in 2009, which was also based on ED-ES
data, indicates that the baseline period employed for the
Poisson CUSUM calibration in this study might be in-
flated as a result of the summer wave of pandemic A
(H1N1) influenza. A lower baseline mean derived from a
clear non-influenza season led to identification of sea-
sonal influenza one week earlier in 2010/2011 and to an
identification at the same time as in the reference data
in the 2011/2012 seasonal influenza period [39]. The
same might be true for the ED-BE data since the base-
line period for this data source also included the spring/
summer of 2009 due to limited data availability.
The stronger correlation and validity in ED-ES data

contained in this study may be influenced by two factors.
First, there are differences in the ILI coding practices.
While patients in the ED-BE data were categorised as
ILI cases due to one single chief complaint or working
diagnosis, patients included in the ED-ES data fulfilled a
more specific combined-case definition comparable to
the case definition of the regional sentinel surveillance
system. Second, the treatment-seeking behaviour and
the use of ED services may differ between the two coun-
tries, indicating a more frequent exploitation of Spanish
ED services by patients with mild conditions who could
have been treated in primary care facilities [40,41]. These
circumstances may have improved the representation of
ILI cases in the ED-ES data and led to a better corres-
pondence of the ED-ES data to the reference data.
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Ambulance service data
We identified no studies that applied ambulance service
data (EP) for syndromic influenza surveillance. While
the EP-BE data exhibited validity and timeliness mea-
sures comparable to the ED data, this result could not
be confirmed by the EP-AT data since low case occur-
rence inhibited validity and timeliness assessment. Al-
though it would have been possible to decrease the
Poisson CUSUM threshold value for the EP-AT data,
which could have resulted in certain aberration detec-
tion, we decided that the value in detecting an occa-
sional accumulation of one or two ILI cases during a
high influenza season is minimal.
Explanations for the performance differences in the

two EP data sources may not be routed in differences in
the coding practice between the EP-AT and the EP-BE
data, as the distribution of ICD codes in ILI cases was
almost comparable in both data sets. The difference may
be explained by the diverging size of the catchment area
of each data set: while the EP-AT data covered just one
district in Austria (Tyrol), the EP-BE data were available
for the entire country.

Emergency medical dispatch data
Emergency medical dispatch data (EMD-AT) indicated
the beginning of the autumn/winter wave of A(H1N1) in-
fluenza earlier than shown in the reference data. However,
due to strong variability in the data set, the time series of
EMD-AT did not correspond to the pattern seen in the
time series of the reference data. Mostashari et al. [8] and
Bork et al. [9] have also used EMD data based on compar-
able EMD coding systems but applied aberration detection
algorithms based on regression analysis to control for sev-
eral influencing variables (e.g. seasonality, holidays, tem-
perature) [8] or dynamic forecasting models [9]. They
discovered a diminished false detection rate [8] but a
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comparable timeliness of the system for syndromic in-
fluenza surveillance [9]. Due to the high variability and
background noise of the broad EMD symptom cate-
gories, which was also seen by Coory et al. [42], it is
recommended to further monitor the EMD-AT data to
specify and fine-tune the aberration detection algorithm.

Limitations
In this study, the reference data were retrieved mainly from
clinical sentinel surveillance, which may be subject to
over-, as well as underreporting and provides no indication
regarding the virus type and subtype of ILI cases. However,
clinical sentinel data are regarded as the preferred source
Table 6 Sensitivity, specificity, and false detection rate of Poi
during week 36 (30.8.) to week 52 (31.12.) in 2009

Data
source

Sensitivity*% Specificity†% Sensitivi

Weekly

EMD-AT (3/9) (5/8) (5/67

33.3 62.5 7.5

EP-AT (0/9) (8/8) (0/67

0.0 100.0 0.0

EP-BE (6/10) (6/7) (12/7

60.0 85.7 17.1

ED-BE (10/10) (4/7) (26/7

100.0 57.1 37.1

ED-ES (6/8) (8/9) (30/5

75.0 88.9 53.6

*Brackets: Number of weeks / days with at least one true-positive Poisson CUSUM s
days according to reference data.
†Brackets: Number of true-negative weeks / days (no Poisson CUSUM signal) in synd
pandemic period according to reference data.
‡Brackets: Number of weeks/days with a false-positive Poisson CUSUM signal in syn
surveillance data.
of identifying the course of the pandemic [22], which was
of primary interest in this study.
Unfortunately, historical data availability of syndromic

surveillance data was limited and influenced the possi-
bilities in calculating solid Poisson CUSUM parameters.
Even though it has been demonstrated that short baseline
periods are not problematic for the application of the
CUSUM algorithm [43], the inclusion of the pandemic
spring/summer period in 2009 might have increased the
baselines in the Belgian and Spanish data sets which were
only available for 2009. An increased baseline subsequently
inflates the Poisson CUSUM parameters (reference value k;
threshold value h) and therefore may decrease the validity
sson CUSUM signals for syndromic influenza surveillance

ty*% Specificity†% False detection rate‡%

Daily Weekly Daily

) (53/56) (3/6) (3/8)

94.6 50.0 37.5

) (56/56) (0/0) (0/0)

100.0

0) (51/53) (1/7) (2/14)

96.2 14.3 14.3

0) (45/53) (3/13) (8/34)

84.9 23.1 23.5

6) (63/67) (1/7) (4/34)

94.0 14.3 11.8

ignal in syndromic surveillance data divided by number of pandemic weeks/

romic surveillance data divided by number of weeks / days outside the

dromic surveillance data divided by all Poisson CUSUM signals of syndromic
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and timeliness assessment during the autumn/winter
period. In general, fine-tuning of the CUSUM parameters
is advisable [6] and, as it was demonstrated by Schrell et al.
in the ED-ES data, a recalibration of the CUSUM parame-
ters outside the pandemic period may have increased the
timeliness of our approach [39].
Additionally, we encountered constraints for the validity

assessment of the daily collected data caused by weekly
available reference data. We attempted to solve this prob-
lem by employing a weekly and daily approach. This
allowed us to formulate ranges in which sensitivity and
specificity might be located, but it should be emphasized
that the daily investigation was very strict and could pos-
sibly underestimate the validity measured in this study.
We applied an aberration detection algorithm that is

easy to apply, but other approaches such as regression
analysis are also often used [44]. In this study, we took
day-of-the-week effects into consideration and attempted
to ensure that baseline numbers were not affected by sea-
sonal influenza periods. However, other approaches are
available that directly control for seasonality, day-of-the-
week effects and other influencing factors such as public
holidays or vacation time, and may advisably be applied in
the future to increase validity and timeliness [11,45]. Add-
itionally, it seems to be worth incorporating the monitor-
ing of age-group specific ILI cases, especially those of
children, to enhance the performance of the approach
[6,46]. Given the low daily case numbers of respiratory
syndrome or ILI cases in the analysed data sets, however,
the stratification in age groups in this case may not lead to
valid results. A weekly analysis may be possible and may
solve the issue of too low case numbers [46]. For the iden-
tification of public health-relevant aberrations in EMS
data, future work should also focus on the definition of
alert criteria, for example, a definition of the number of
consecutive days with significant aberrations in case num-
bers that lead to a response decision [39,47].

Conclusion
In our study, data from emergency departments, along
with data from the ambulance service covering significant
catchment areas exhibited the most favourable perform-
ance in terms of validity and timeliness for syndromic in-
fluenza surveillance during the autumn/winter wave of the
A(H1N1) influenza pandemic in 2009. It could be demon-
strated that diverse European routine EMS data sources
could be used in a common syndromic surveillance ap-
proach to gain information on sudden or out-of-season
health threats. However, the individual determination of
aberration detection parameters per data set is required to
adjust the algorithm to the local setting.
Data from European EMS providers can support public

health decision-making since these data provide timely
and readily obtainable information on mostly severe cases.
This information can enhance and augment various popu-
lation health information data sources during health crises
or other situations in which readily available health data
are necessary to identify for example the effects of chan-
ging policies. A flexible and easy-to-use syndromic surveil-
lance approach based on EMS data may be of value in
improving surveillance activities in Europe.
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