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Abstract 

Background Hearing impairment (HI) has become a major public health issue in China. Currently, due to the limita-
tions of primary health care, the gold standard for HI diagnosis (pure-tone hearing test) is not suitable for large-scale 
use in community settings. Therefore, the purpose of this study was to develop a cost-effective HI screening model 
for the general population using machine learning (ML) methods and data gathered from community-based sce-
narios, aiming to help improve the hearing-related health outcomes of community residents.

Methods This study recruited 3371 community residents from 7 health centres in Zhejiang, China. Sixty-eight indica-
tors derived from questionnaire surveys and routine haematological tests were delivered and used for modelling. 
Seven commonly used ML models (the naive Bayes (NB), K-nearest neighbours (KNN), support vector machine (SVM), 
random forest (RF), eXtreme Gradient Boosting (XGBoost), boosting, and least absolute shrinkage and selection opera-
tor (LASSO regression)) were adopted and compared to develop the final high-frequency hearing impairment (HFHI) 
screening model for community residents. The model was constructed with a nomogram to obtain the risk score 
of the probability of individuals suffering from HFHI. According to the risk score, the population was divided into three 
risk stratifications (low, medium and high) and the risk factor characteristics of each dimension under different risk 
stratifications were identified.

Results Among all the algorithms used, the LASSO-based model achieved the best performance on the valida-
tion set by attaining an area under the curve (AUC) of 0.868 (95% confidence interval (CI): 0.847–0.889) and reaching 
precision, specificity and F-score values all greater than 80%. Five demographic indicators, 7 disease-related features, 5 
behavioural factors, 2 environmental exposures, 2 hearing cognitive factors, and 13 blood test indicators were identi-
fied in the final screening model. A total of 91.42% (1235/1129) of the subjects in the high-risk group were confirmed 
to have HI by audiometry, which was 3.99 times greater than that in the low-risk group (22.91%, 301/1314). The high-
risk population was mainly characterized as older, low-income and low-educated males, especially those with multi-
ple chronic conditions, noise exposure, poor lifestyle, abnormal blood indices (e.g., red cell distribution width (RDW) 
and platelet distribution width (PDW)) and liver function indicators (e.g., triglyceride (TG), indirect bilirubin (IBIL), 
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aspartate aminotransferase (AST) and low-density lipoprotein (LDL)). An HFHI nomogram was further generated 
to improve the operability of the screening model for community applications.

Conclusions The HFHI risk screening model developed based on ML algorithms can more accurately identify 
residents with HFHI by categorizing them into the high-risk groups, which can further help to identify modifi-
able and immutable risk factors for residents at high risk of HI and promote their personalized HI prevention 
or intervention.

Keywords Hearing impairment, Machine learning, General population, Questionnaire-based indicators, Blood 
parameters

Introduction
Hearing impairment (HI) is the most common sensory 
impairment and has become a public health concern 
worldwide [1, 2]. HI is often considered an invisible dis-
ability. It is characterized by reduced hearing sensitivity 
and loss of speech understanding caused by degenera-
tion of the cochlea, the auditory nerves or both [3]. This 
disorder has caused substantial social and economic 
burdens on adults in China. In 2011, 2013, and 2015, the 
direct costs attributable to HI of middle-aged and older 
people aged 45 and above in China were $50.699 bil-
lion, $81.783 billion and $106.777 billion, accounting for 
3.43, 4.54 and 5.54% of the overall healthcare costs in the 
same year, respectively [4]. Currently, pure-tone hear-
ing tests are the gold standard for identifying HI, which 
requires expensive audiological equipment and trained 
professionals, leading to limitation the feasibility of uti-
lizing pure-tone hearing tests for mass screening of HI 
at the community level. Moreover, relevant studies have 
shown that due to the lack of professional hearing health 
care personnel and insufficient allocation of HI detection 
equipment in China’s grassroots communities, residents 
generally lack routine HI detection services, resulting in 
timely detection of early HI lesions and high-risk group 
[5, 6]. Therefore, there exists a pressing need to estab-
lish a practical and accessible screening tool tailored for 
residents with HI, with the aim of mitigating the progres-
sion to clinically significant HI [7]. Many HIs, defined as 
audiometric losses, usually start from higher-frequency 
deterioration, then develop slowly and evolve gradually 
to lower-frequency or speech-frequency dysfunction [8]. 
Primary screening for high-frequency hearing impair-
ment (HFHI) could be the key to starting early preven-
tion and intervention.

Currently, well-known HI risk factors in the general 
population include age [9], genetics, behavioural factors 
(e.g., smoking and exercise) [10], environmental expo-
sures (e.g., noise exposure), health care utilization fac-
tors (e.g., immunization and antibiotics), and chronic 
disorders (e.g., hypertension and diabetes) [11]. Further-
more, various biomarkers involved in inflammation (such 
as increased white blood cell (WBC) counts, neutrophil 
(NE) counts, monocyte (MO) counts, and lymphocyte 

(LY) counts) and metabolic parameters (such as low-
density lipoprotein (LDL) and high-density lipoprotein 
(HDL)) are also recognized as risk indicators of HI [12]. 
Chronic changes in inflammatory status that accompany 
the ageing process, known as inflammation, may cause 
or accelerate long-term damage to the hearing system 
[13]. Red blood cell distribution width (RDW), a param-
eter used to classify anaemia, was recently reported to be 
associated with inflammation and microcirculation dis-
orders [14]. HDL and LDL have been reported to affect 
blood supply and thus may potentially influence sud-
den sensorineural HI [12]. While several studies have 
attempted to investigate the relationships between HI 
and blood inflammation and metabolic parameters, lim-
ited studies have used these parameters to predict HI. 
Notably, in recent years, Chinese community residents 
have regular annual physical examinations, and blood 
tests (blood routine and biochemical) during physi-
cal examinations are routine tests, and doctors usually 
extract only a small part of the information hidden in the 
results of routine blood tests [15]. Thus, in the era of big 
data, conducting more comprehensive analyses by inte-
grating existing community blood test data with ques-
tionnaire data holds significant promise for elucidating 
HI-related biomarkers, identifying individuals with HI, 
and proactively alerting community residents about their 
risk of HI.

In the area of HI assessment, various tools, such as 
screening scales, apps, tablet-based and computer-based 
devices, and internet-based platforms, have been devel-
oped by researchers. While these products are widely uti-
lized in patients with HI, the existing assessment scales 
primarily focus on evaluating the functional aspects and 
consequences of HI, especially in the elderly population 
[16]. Despite the availability of low-cost automated hear-
ing tests for remote screening, their accuracy and acces-
sibility are constrained by factors such as environmental 
noise, equipment reliability, and data security [17].

Machine learning (ML), situated at the intersection of 
statistics and computer science, is a scientific field dedi-
cated to understanding how computers learn from data. 
ML algorithms, which are capable of capturing complex 
and unpredictable patterns in human physiology, have 
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shown promise in audiology [18]. To date, most HI pre-
diction models based on ML algorithms have been built 
for noise-related workers, and their predictors are usually 
noise exposure level and exposure time, which are not 
suitable for the general population [19]. The existing HI 
prediction models for the general population are limited. 
One study established a simple screening tool for mod-
erate-to-severe HI in Shanghai communities, and the 
accuracy of the testing set reached 91.92%, but the study 
subjects were mainly elderly people [20]. Another study 
predicted HI based on a decision tree-based algorithm 
and obtained an area under the curve (AUC) value of 
0.870, but this study mainly focused on speech-frequency 
HI and limited the early prevention of HI [21].

Therefore, this study aimed to develop an HFHI ML 
risk screening model for the general population by using 
routine physical examination data (blood biomark-
ers and liver function indicators) and demographic and 
lifestyle risk factor data from community residents. The 
performances of the seven most commonly used ML 
algorithms for screening HFHI in the general population 
were further compared to determine the best algorithm. 
We envision that this model can be used directly in com-
munity settings to screen populations for HFHI risk in 
combination with electronic case information to provide 
guidance and assistance for personalized HFHI preven-
tion or intervention in the community.

Materials and methods
Study design and dataset
To develop the optimal HI screening model, a multistage 
stratified cluster sampling method was used to conduct a 
population-based cross-sectional survey of 7 health cen-
tres in Hangzhou, Jiaxing, Huzhou, Quzhou and Lishui 
from 2016 to 2018 based on the geographical distribu-
tion of Zhejiang Province and the stratification of city 
size, city and county. Considering the sample effective 
rate and the prevalence rate of HFHI, the sample size was 
calculated to be at least 1436 people by using the current 
study formula, and 4010 people were ultimately investi-
gated. After deleting and filling in the missing data, 3371 
people were included. During the specified timeframe, 
all individuals undergoing physical examinations at these 
health centres were asked to ascertain their willingness 
to participate in our study. Those who agreed to par-
ticipate were included in the study and asked to sign an 
informed consent form. After completing the informed 
consent process, all participants completed a compre-
hensive assessment, including a questionnaire survey, 
an audiometric assessment and a blood test, during their 
annual physical examination (Fig.  1). Inclusion crite-
ria are as follows: (1) Residents from Zhejiang Province 
who have lived in the area for more than one year and are 

over 18 years old; (2) No self-reported occupational noise 
exposure; (3) No previous medical history of otitis media, 
craniocerebral injury, or ototoxic drug use or detonation 
deafness; (4) No history of inflammation or fever within 
30 days before audiometry test. The study was conducted 
according to the guidelines of the Declaration of Hel-
sinki, and approved by the Institutional Review Board of 
Hangzhou Normal University Ethics Committee (grant 
number: 2017LL107), and all personal privacy informa-
tion was well protected and removed during the process 
of analysis and publication.

Audiometric assessment
All pure-tone air-conduction hearing thresholds were 
measured by trained researchers using audiometers 
(AT235; Interacoustics AS, Assens, Denmark) with 
supra-aural headphones (TDH-39; Telephonic Corpora-
tion, Farmingdale, USA). Subjects were advised to stay 
away from noisy conditions for more than 12 h prior to 
the hearing test to improve test accuracy. Pure-tone air 
conduction hearing thresholds were tested in both ears at 
frequencies of 3 Kilohertz (kHz), 4 kHz, 6 kHz and 8 kHz 
over an intensity range of -10 to 110 decibel (dB(A)). In 
the audiometric examination, participants who did not 
respond at least once were considered nonresponsive. 
To measure the reliability of participants’ responses, the 
1 kHz frequency was tested twice in each ear. An unre-
liable response was considered if the results differed by 
more than 10  dB(A), and then the assessment was per-
formed again. Pure tone averages were computed across 
fixed frequency bands (3 kHz, 4 kHz, 6 kHz and 8 kHz) or 
across affected frequencies, and the result of > 25  dB(A) 
with a worse-hearing ear was diagnosed as HFHI [22].

Questionnaire survey
The questionnaire survey and audiometry test were con-
ducted on the same day. The original questionnaire was 
developed and revised through expert consultation and 
included questions about demographics, symptom and 
disease histories, behavioural factors, environmental 
exposure and cognitive parameters (Additional file  1). 
Then, a pre-participation survey involving 926 par-
ticipants was administered. The results showed that the 
developed questionnaire reached a Cronbach’s α coeffi-
cient of 0.753 and a Kaiser–Meyer–Olkin (KMO) value of 
0.794 [23–25].

Blood sample collection and laboratory testing methods
First, research participants adhered to fasting conditions 
before morning blood collection, during which medi-
cal personnel obtained peripheral venous blood samples 
(the same day as the audiometric assessment and ques-
tionnaire survey). Each sample received a unique serial 
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number corresponding to the participant’s questionnaire. 
On-site investigators utilized sterile syringes to care-
fully extract 1 ml of daily collected EDTA-anticoagulated 
whole blood. The collected blood was subsequently dis-
tributed into sterile Eppendorf tubes, sealed, and sub-
jected to a meticulous verification process involving 
cross-checking the participant’s name and serial number. 
Finally, each appropriately labelled sample was securely 
stored at -80 °C for subsequent analysis.

Candidate indicators
To develop HFHI risk screening models, a total of 68 var-
iables were collected from the questionnaire survey and 

blood test for modelling purposes. Demographics, symp-
tom and disease histories, behavioural factors, environ-
mental exposure, and hearing cognition were included in 
the structured questionnaire. The data were collected and 
measured under standardized conditions following uni-
form procedures. The details of the candidate indicators 
are shown in Table 1.

Statistical analyses
Data pre‑processing and feature selection
Epidata V.3.1 was used for survey data entry, checking 
and error correction. All the statistical analyses were car-
ried out using R software V.4.3.2. For data pre-processing, 

Fig. 1 Flow diagram of study. Model development performed with 3371 community residents
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we first excluded participants for whom more than 5% of 
the haematological data were missing. Second, for par-
ticipants who had less than 5% missing data for haema-
tology features, we imputed the missing data within each 
health centre using values generated by multiple interpo-
lation without changing the distribution of the observed 
data [26]. Overall, 3371 participants were included in the 
cohort. Third, since the normal reference value ranges 
varied in haematology tests of different health centres 
(Additional file 2), for the purpose of future generalizabil-
ity of the screening model, we recoded the haematologi-
cal test indicators into three-level categorical values (i.e., 
low, normal and high) according to their corresponding 
reference values. Finally, a total of 3371 subjects and 68 
covariates were included in the subsequent analysis. 
Univariate comparisons were conducted between HFHI 
patients and controls. Categorical variables are shown as 
n (%). Differences among groups at baseline were ana-
lysed by the chi-square test (for categorical variables). All 
p values were two-tailed, and p < 0.05 was considered to 
indicate statistical significance at this stage.

Model development and validation
After performing univariant feature selection, 58 indica-
tors were selected for subsequent model construction. To 
both construct and evaluate the models, 2/3 (n = 2218) 
of the study population was randomly generated as the 
training set, and the remaining 1/3 (n = 1153) was used 
as the validation set (Fig.  1). Seven different ML algo-
rithms were adopted in the training set to construct 7 
distinct predictive models. These algorithms include 

naive Bayes (NB) [27], K-nearest neighbours (KNN) [28], 
support vector machine (SVM) [29], random forest (RF) 
[30], eXtreme Gradient Boosting (XGBoost) [31], Boost-
ing [32], least absolute shrinkage and selection opera-
tor (LASSO regression) [33] (packages “randomForest”, 
“e1071”, “FNN”, “gbm”, “xgboost”, “caret”, and “glmnet” in 
R statistical analysis software). In addition, to evaluate 
the validity of each model, we used fivefold and tenfold 
cross-validation techniques on the entire dataset. Spe-
cifically, for fivefold cross-validation, the available dataset 
was divided into five roughly equal-sized subsets. Four 
of them were applied to fit the model, and the remain-
ing one was used to estimate the accuracy of the model. 
Similarly, for the tenfold cross-validation, we performed 
10 cross-validations by randomly dividing the entire 
dataset into 10 parts for 10 iterations. In each iteration, 
we selected 9 parts as training data and 1 part as the test 
set. The average result was 10% of the test data unused 
for each model.

The evaluation of the model was completed in the vali-
dation set. For two class-predictions these are typically the 
true positives (TP), true negatives (TN), false positives (FP) 
and false negatives (FN). The performance of the devel-
oped models was assessed by six metrics: AUC, accuracy 
( TP+TN

TP+TN+FP+FN
 ), precision ( TP

TP+FP
 ), recall ( TP

TP+FN
 ), specificity 

( TN

TN+FP
 ), and F-score ( 2TP

2TP+FP+FN
 ). The AUC value was 

used as a reasonable summary of the overall diagnostic 
accuracy of the test, and the model with the largest AUC 
value was considered to have the best overall performance. 
Accuracy was defined as the percentage of true outcomes 
out of all prediction results. Precision was the ratio of true 

Table 1 Variables included in this study

Data Sources Category Number of 
indicators

Candidate indicator (s)

Questionnaire-
based indicators

Demographics 6 age, gender, marital status, education level, personal average monthly income, familial 
disease

Symptom histories 3 self-perceived hearing status, tinnitus, ear pain history in the past year

Disease histories 11 hypertension, diabetes, cerebral haemorrhage, arteriosclerosis, cerebral infection, ane-
mia, migraine, coronary heart disease, otitis media, chronic kidney disease, tumors

Behavioral factors 7 smoking, secondhand smoking, alcohol drinking, hours of sleep, electronic volume, daily 
fruit and vegetable intaking, exercise frequency

Environmental exposure 4 workplace noise exposure, living noise exposure, work stress, life stress

Hearing cognitive situation 4 pay attention to your hearing, pay attention to hearing protection, regular hearing check, 
hearing protection skills

Blood parameters Blood routine indices 21 eosinophil(EO), basophilic(BA), EO(%), hemoglobin(HGB), lymphocyte(LY), mean 
corpuscular hemoglobin concentration(MCHC), monocyte(MO), mean platelet 
volume(MPV), neutrophil(NE), blood platelet count(BPC), RDW, basophilic(%)((BASO(%)), 
hematocrit(HCT), LY(%), mean corpuscular hemoglobin(MCH), mean corpuscular 
volume(MCV), MO(%), NE (%), platelet distribution width(PDW), red blood cell(RBC), WBC

Hepatic function indices 12 triglyceride(TG), alanine aminotransferase(ALT), indirect bilirubin (IBIL), direct 
bilirubin(DBIL), albumin(ALB), total bilirubin(TBIL), blood urea nitrogen(BUN), aspartate 
aminotransferase(AST), total cholesterol(TC), LDL, HDL, creatinine(CR)
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positives among all positive results [34]. Recall was the ratio 
of true positives out of true cases. The specificity reflects 
the percentage of true negatives among all negative results 
identified by the HFHI screening model. The F-score was 
the harmonic average of the precision and recall, allowing 
for comparison of the models’ performance in identifying 
true positives when cases and controls were unbalanced in 
the dataset. By convention, the threshold for the AUC of a 
good model was set to 0.70 [35]. After that, the model with 
the best performance in terms of the six accuracy measure-
ments was selected as the final HFHI screening model.

Finally, based on the variables that survived in the final 
model, we used the "rms" and "nomogram" R packages 
to construct a nomogram. The nomogram was based on 
proportionally converting each regression coefficient in 
multivariate logistic regression to a 0- to 100-point scale 
[36]. The effect of the variable with the highest β coeffi-
cient (absolute value) was set to 100 points. The points 
were added across variables to derive total points and 
then converted to the nomogram score, representing a 
certain individual’s model-based probability of having 
HFHI.

Results
Subject characteristics and prevalence of HFHI
The present study included 3371 community partici-
pants, which consisted of 1730 males (51.3%) and 1641 
females (48.7%), aged between 18 and 98  years, with 
a mean of 50.39 ± 15.23  years. Among them, 57.3% 
(1930/3371) were diagnosed with HFHI. Compared 
to those without HFHI, those with HFHI were usually 
older; more likely to be male; had lower education levels 
and incomes; and were more likely to be diagnosed with 
hypertension, diabetes, otitis media and chronic heart 
disease. The univariate analysis results of the behavioural 
factors, environmental exposures, symptoms and disease 
conditions, routine blood indices and hepatic function 
indices are summarized in Additional file 3. As a result, 
a total of 58 candidate indicators were identified for the 
next process of model construction (p < 0.05).

Performance evaluation of the HFHI screening models
In this study, we used 7 ML algorithms to construct the 
HFHI classification models in the training set and evalu-
ated the performance of these models in the validation 
set using AUC values, accuracy, precision, recall, speci-
ficity and F-score measurements. Finally, the model with 
the best discriminative ability in the validation stage was 
selected as the final model to distinguish HFHI patients 
from community residents. We first compared the 
performance of each model by using commonly used 
receiver operating characteristic (ROC) curves and AUC 
values. The validated ROC curves and the validated AUC 

values for all models are shown in Fig.  2 and Table  2. 
Among the adopted algorithms, the LASSO algorithm 
achieved the best validated AUC of 0.868 (95% confi-
dence interval (CI): 0.847–0.889) in the validation cohort, 
indicating that it had the best overall discriminative abil-
ity compared to the other models. In addition, KNN, 
Boosting and XGBoost achieved relatively good overall 
discriminative ability, with validated AUC values of 0.866 
(95% CI: 0.845–0.887), 0.858 (95% CI: 0.837–0.880) and 
0.854 (95% CI: 0.833–0.876), respectively.

These ML models were further evaluated and com-
pared with respect to other performance-related prop-
erties, including accuracy, precision, recall, specificity 
and F-score. The results are summarized in Table  2. In 
detail, the best accuracy was attained by the RF model 
(80.57%). In terms of precision, all 7 models achieved 
relatively good performance by attaining a precision 
of more than 80%, of which the best model was the NB 
model (93.52%). For the measurement of recall, the RF 
models attained the best value of 81.74% among the 7 
models. The two best models in terms of specificity were 
the NB model (96.62%) and the LASSO model (81.01%). 
Finally, we compared the F-scores among these models, 
where 6 out of 7 models achieved values above 80%. The 
RF model (83.21%), the SVM model (82.94%), the KNN 
model (81.97%), the LASSO model (81.78%), the Boost-
ing model (80.52%), and the XGBoost model (80.38%) are 
ranked from highest to lowest.

After performing these comprehensive comparisons, 
we found that the overall performances of the SVM 
model, RF model, KNN model and LASSO regression 
model were relatively better than those of the other mod-
els, but the AUC values of the SVM model (0.805), RF 
model (0.803) and KNN model (0.866) were lower than 
those of the LASSO regression model. Furthermore, we 
used fivefold and tenfold internal cross-validation meth-
ods to evaluate the performance of different algorithms. 
The AUC values of the models from cross-validation were 
compared with those of the original model. Similar to the 
original model, LASSO and KNN consistently outper-
formed the other algorithms. Specifically, in the fivefold 
cross-validation, the mean AUC values of the LASSO- 
and KNN-based models were both 0.857. Notably, when 
comparing the 95% CI, the KNN model showed a slightly 
narrower range (0.844–0.869) than did the LASSO model 
(0.845–0.870). In the tenfold cross-validation model, 
KNN achieved a slightly better performance than LASSO 
in terms of the AUC mean (Additional file 4). However, 
from the perspective of model interpretation and appli-
cation, the LASSO-based model has unique strengths. 
First, in terms of model application, LASSO is capable 
of selecting impactful variables, thereby simplifying the 
model and facilitating its application value. KNN lacks a 
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Fig. 2 HFHI predictive performance of seven machine learning classification models

Table 2 Comparisons on accuracy, precision, recall, specificity and F-score of classification among different machine learning 
approaches

Values greater than 85% are highlighted in bold

Performance metric NB SVM RF XGBoost Boosting KNN LASSO

ROC-AUC 0.653 0.805 0.803 0.854 0.858 0.866 0.868

Accuracy, % 59.76 80.49 80.57 77.02 77.97 79.10 79.44

Precision, % 93.52 85.47 84.73 80.80 84.00 83.28 85.53
Recall, % 34.02 80.56 81.74 79.97 77.32 80.71 78.35

Specificity, % 96.62 80.38 78.90 72.78 78.90 76.79 81.01

F-score, % 49.89 82.94 83.21 80.38 80.52 81.97 81.78
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variable filtration step, necessitating the inclusion of all 
variables for subsequent application. Second, in terms 
of model interpretation, the important variables selected 
by LASSO can be used to design personalized interven-
tion programs, while the KNN-based model does not 
have such capability since all involved features contribute 
to the model without a clear distinction of importance, 
limiting interpretability and customization potential. 
Consequently, we finally adopted the LASSO regression 
algorithm to construct the final HFHI screening model.

By adopting LASSO regression, our screening model 
ultimately selected 34 variables as indicators of HFHI risk 
and reached a fitted AUC of 0.866 (95% CI: 0.852–0.881) 
in the training cohort and a predicted AUC of 0.868 
(95% CI: 0.847–0.889) in the validation cohort. The two 
AUC values were relatively high and differed very little, 
indicating that the derived model attained robust per-
formance. The 34 HFHI risk indicators that survived in 
the final LASSO-based model included 5 demographic 
indicators, 7 disease-related features, 5 behavioural fac-
tors, 2 environmental exposures, 2 hearing cognitive fac-
tors, and 13 blood test indicators. Among them, history 

of coronary heart disease, otitis media and self-reported 
hearing issues, as well as several routine blood indices 
(e.g., RDW, PDW and LY%) and liver function indica-
tors (e.g., TG, IBIL, AST and LDL), were identified as the 
most significant indicators (Additional file 5).

The HFHI screening nomogram and a case study for model 
interpretation
Based on the 34 HFHI risk indicators identified by 
LASSO regression, we further generated a nomogram 
to transform the LASSO regression model into an acces-
sible screening tool that could ultimately be easily used 
by primary care physicians and community residents. In 
the nomogram (Fig. 3), an individual’s total points were 
obtained by summing the points of each individual indi-
cator achieved by a certain individual on the correspond-
ing scale, and a vertical line was drawn on the scale based 
on the total points, providing this individual’s final HFHI 
risk score. In our dataset, all individuals were ranked 
from low to high risk based on their risk scores and clas-
sified into three different risk groups: high-risk (score 
0.75–1.00), medium-risk (score 0.45–0.75), and low-risk 

Fig. 3 Nomogram for predicting the probability of HFHI in community setting. The first row (Points) indicates the points that are assigned 
to each variable’s measurement from rows 2–35, which are the variables that are included in the risk model. The assigned points for all variables 
are then summed, and the total points is shown as the total score. Once the total score is located, draw a vertical line down to the bottom line 
to obtain the predicted probability of HFHI. The patient record shows a male with HFHI and the red triangle is the characteristics of this case and its 
corresponding predicted risk score
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(score 0–0.45). The classification threshold of each risk 
category was determined based on the positive predic-
tive value (PPV), sensitivity and specificity of each risk 
category. In general, the low-risk group comprised 1314 
individuals, 22.91% (301/1314) of whom exhibited HFHI. 
In the medium-risk group, consisting of 822 individuals, 
60.83% (500/822) were diagnosed with HFHI. Within the 
high-risk group, 91.42% (1129/1235) were confirmed as 
having HFHI. According to the nomogram, the demo-
graphic characteristics of the high-risk groups of HFHI 
patients could be described as elderly, low-educated, and 
low-income males. In terms of disease history, people 
with a history of tinnitus, hypertension, diabetes, coro-
nary heart disease, or otitis media were at greater risk of 
HFHI. For lifestyle features, a history of smoking, alcohol 
consumption, high-level volume when using electronic 
products, high-level life pressure, and noise exposure 
in the working environment were risk factors for HFHI. 
Furthermore, 13 blood test indicators were identified 
by our model. Among them, the indicators that had the 
greatest impact on the HFHI were RDW, NE and TG.

In Fig.  3, we also use a community resident as an 
example to illustrate the application of the constructed 
HFHI screening model in community settings, showing 
the model’s ability to identify potential high-risk resi-
dents who are normally overlooked. Generally, senior 
residents were at greater risk of HFHI, as age was one 
of the most important indicators of HI. However, for 
the 42-year-old man in our validation set, he was rela-
tively young but was classified into the high-risk group 

of HFHI, as his identified HFHI risk was 0.846. Moreo-
ver, this middle-aged man was confirmed to have HFHI 
according to his audiology test results (47.50 dB for the 
poor ear). As shown in Fig. 3, the 34 involved features are 
marked with red triangles based on the patient records. 
From the perspectives of demographic and disease status, 
this man had self-perceived HI, hypertension and diabe-
tes. He also has several behavioural risk factors, includ-
ing smoking, alcohol consumption, excessive electronic 
volumes and daily noise exposure in the workplace. In 
terms of biomarker risk factors, the patient had an abnor-
mally high level of IBIL. It is hoped that by applying this 
screening model, we could screen these potentially high-
risk patients for subsequent confirmatory diagnosis and 
identify their risk factors for subsequent individualized 
interventions.

Characteristics differences in risk stratification
Differences in resident lifestyles according to risk 
stratification
To further explore the distribution of the lifestyle vari-
ables identified by the model in the three risk categories, 
we calculated the proportion of individuals with certain 
lifestyle behaviours within intervals of 0.1 points for 
their risk score and plotted loess curves over the spec-
trum of risk profiles. As shown in Fig. 4, the proportion 
of individuals with habits of using electronic volume over 
40%, smoking, alcohol consumption, or self-reported 
workplace noise experience more than once a week 
increased significantly with increasing risk scores, while 

Fig. 4 Distribution of resident lifestyle in risk stratification
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the proportion of individuals with habits of daily fruit 
and vegetable intake over 500 g and exercise more than 
once per month decreased significantly. In detail, 72.83% 
(957/1314) of individuals in the low-risk group exer-
cised more than once per month, while this proportion 
decreased to 46.07% (569/1235) in the high-risk group. A 
total of 28.10% (347/1235) of individuals in the high-risk 
group drank alcohol, which was 3.13 times greater than 
that of the low-risk group (8.98%, 118/1314). Similarly, 
39.51% (488/1235) of individuals in the high-risk group 
were smokers, which was 2.93 times greater than that of 
the low-risk group (13.47%, 177/1314).

Differences in the resident blood indices according to risk 
stratification
We also explored the distribution of the identified blood 
index variables in the three risk categories (Fig.  5). As 
the risk score increased, the proportion of individuals 
with high levels of LDL, LY%, RDW, TC and EO% also 
increased, while the proportion of individuals with high 
levels of HDL decreased slightly. Among them, 29.15% 
(360/1235) of individuals in the high-risk category had 
high levels of TC, which was 3.25 times that in the low-
risk group (8.98%, 118/1314). In the high-risk group, 
36.03% (445/1235) of individuals had high LDL levels, 
which decreased to 23.06% (303/1314) in the low-risk 
group. Conversely, the proportion of individuals with high 
levels of HDL decreased from 6.16% (81/1314) in the low-
risk group to 3.16% (39/1235) in the high-risk group.

Discussion
HI is a prevalent sensorineural disorder and a grow-
ing public health issue of global concern. In this study, 
57.3% were diagnosed with HFHI. It is suggested that 
half of all cases of HI can be prevented through public 
health measures [10, 37]. For instance, the World Health 
Organization (WHO) estimates that over 19% of child-
hood HI cases can be avoided by immunization against 
rubella and meningitis alone. In addition, the develop-
ment and implementation of community-based hear-
ing conservation programs aimed at changing listening 
behaviours and noise control in entertainment venues are 
also effective ways to intervene [38]. The development of 
a community-based risk screening tool for HI could be 
highly important and could be considered a first step in 
developing primary screening and prevention strategies 
for hearing health care in communities. In the current 
study, we adopted 7 ML algorithms to develop HFHI risk 
screening models by using questionnaire-based features 
and haematological test outcomes. The AUC values of 
the 6 models in the model validation stage were > 0.80, 
indicating that the ML model can be used to accurately 
identify HFHI individuals among ordinary residents.

When comparing the performance of the built models 
on the validation set, we found that the LASSO-based 
regression model achieved the best performance among 
all the algorithms tested, attaining an AUC of 0.868 (95% 
CI: 0.847–0.889) and reaching precision, specificity and 
F-score values all greater than 80% on the validation set. 

Fig. 5 Distribution of resident blood index in risk stratification
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LASSO is a regression-based methodology allowing for 
simultaneous involvement of a large number of covari-
ates in the model. More importantly, it penalizes the 
absolute value of a regression coefficient; thus, it is capa-
ble of regulating the impact a coefficient may have on the 
overall regression. The greater the penalization is, the 
greater the shrinkage of coefficients, with some reaching 
0, thus automatically removing unnecessary/uninfluen-
tial covariates, making the model lean and resulting in a 
high discrimination rate [39]. The LASSO-based screen-
ing model is a classifier that can accumulate relative risks 
of meaningful variables and maximize its predictive 
power. This fundamental characteristic might explain the 
optimal discriminative ability of the LASSO model in our 
study [33].

Routine blood tests in primary community health care 
institutions are generally performed regularly at a fre-
quency of at least once a year; on this basis, making full 
use of these indicators may promote primary screening 
and early warning of common diseases in community 
settings. In our study, the developed model revealed the 
value of haematological test data in screening HFHI, 
including metabolic parameters (e.g., LDL, HDL and 
TG), inflammatory parameters (e.g., NE and MPV) and 
other factors (e.g., AST). Among them, 4 indicators that 
had a significant impact on the screening model of the 
HFHI were TG, RDW, LY (%), and NE. Our research 
showed that residents with low TG levels and high TC 
levels are at greater risk of HFHI. Similarly, related stud-
ies have shown that TG, TC, and the LDL/HDL ratio are 
strongly associated with the prognosis of HI. When TC 
ranges from 5.2 to 6.2 mmol/L and TG ranges from 1.7 
to 2.3 mmol/L, hypercholesterolemia increases the whole 
blood viscosity of the inner ear microvessels, which leads 
to haemorheological alterations and incomplete ischae-
mia [40]. A reasonable explanation is that abnormal 
blood lipid levels may lead to changes in whole blood 
viscosity, which may result in impaired microcirculation 
and ultimately lead to inadequate blood supply to tar-
get organs, resulting in sudden sensorineural HI [41]. In 
addition, our model revealed that high RDW is a risk fac-
tor for HFHI. Consistent with prior research, it has been 
shown that inflammatory markers are associated with 
HI in patients with inflammatory diseases, that there is 
a positive correlation between the RDW and mean hear-
ing threshold, and that capturing inflammatory status 
is valuable for screening the risk of HI in residents with 
underlying chronic inflammation [42]. Furthermore, sev-
eral social determinant features were recognized by our 
developed screening model as indicators of HFHI risk, 
including old age, male sex, low education level, and low 
income, which were all reported as risk factors for HI in 
previous studies [43]. Lifestyle factors such as smoking, 

alcohol drinking, a high volume when using electronic 
products and a high level of life pressure were also iden-
tified as risk factors for HFHI in our study. Previous 
research has shown that smokers are at a greater risk of 
HI and that the risk of smoking-related HI may decrease 
over time after quitting smoking [44]. There are many 
studies on the relationship between alcohol consump-
tion and HI [45]. Some studies have found that moder-
ate alcohol consumption has a protective effect on HI, 
which is similar to the cardiac protective effect of alcohol 
[46], whereas in contrast, our study found that alcohol 
consumption is a risk factor for HI. In addition, a cohort 
study has shown that individual music player users listen-
ing to high volumes increase the progression of their HI 
[47]. Therefore, timely intervention after early identifica-
tion of risk factors in our model may have research sig-
nificance for the occurrence of HFHI in residents.

The nomogram has been previously used as a predic-
tive method in HI screening for occupational noise work-
ers and achieved good screening results [48]. Therefore, 
to strengthen the operability and generalizability of our 
screening model for community physicians and resi-
dents, we also created an HFHI nomogram based on the 
derived LASSO-based HFHI risk model. Our nomogram 
achieved good calibration and discriminative ability in 
the validation cohort. This case study also revealed that 
this HFHI risk screening nomogram could be an effec-
tive tool for assessing HFHI risk in the general residen-
tial population and was especially valuable for screening 
potential HFHI patients in young or middle-aged adults. 
It is hoped that this nomogram could be further applied 
by primary care physicians as a routine tool at commu-
nity health centres in the future to facilitate primary 
screening for HI and to help recognize a patient’s modi-
fiable risk factors for individualized intervention and 
treatment plans, ultimately driving current primary care 
towards personalized health care.

To our knowledge, this is the first study to combine 
residents’ routine physical examination indicators and 
demographic and lifestyle risk factors from commu-
nity residents to establish a risk assessment model for 
residents’ HFHI based on an ML algorithm. Previous 
screening tools for HI have mostly targeted the elderly 
population, but they have primarily assessed the negative 
impact of HI on emotional and social problems and have 
not identified risk factors [49]. Model-based screening for 
HI achieved a better prediction effect, with AUC values 
ranging from 0.713–0.776, but it was mainly designed for 
noise-induced workers. Its risk factors are mainly indus-
try type, noise exposure duration and median kurtosis 
[19, 50], which are quite different from those of ordinary 
residents. One study used demographics, clinical fac-
tors, and self-reported hearing status to predict whether 
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speech frequency HI achieved good performance, but 
intervention after speech frequency HI was usually irre-
versible. The value of early prevention and intervention 
for HI is limited [21].

Implications of the study
Our model has several potential implications and con-
tributions. First, it encompassed a comprehensive array 
of variables, including basic personal information, cur-
rent disease history, behavioural and environmental fac-
tors, and self-perceived hearing cognition. Additionally, 
it integrates haematological indicators at the biochemical 
level, thereby forming a screening model that systemati-
cally considers potential risk predictors across multiple 
dimensions, which can provide research ideas for the 
exploration of biomarkers related to HI. Second, we used 
and compared various ML algorithms to construct the 
model, and successfully proved the feasibility of using 
ML algorithms for developing HFHI screening models in 
the general population. More importantly, our screening 
tool is low-cost and widely accessible, making it suitable 
for deployment in grassroots community health ser-
vice centers in China. In this context, community doc-
tors can integrate inquiries about the HI risk factors into 
routine medical check-ups, leveraging our risk screening 
model to assess residents’ HI risk levels. As a result, the 
tool enables accurate identification of high-risk popula-
tions, making the initial stride towards early HI screen-
ing and prevention for community residents. Moreover, 
the model can help identify modifiable and intervenable 
risk factors among individuals at high risk of HI, thereby 
facilitating the delivery of precise interventions and tar-
geted health guidance. Meanwhile, this model can also 
serve as an epidemiological tool to summarize shared 
and common HI risk factors at the population level. 
This application allows for the design of evidence-based 
prevention strategies and policy frameworks in public 
health, contributing significantly to proactive healthcare 
management and community well-being.

Limitations
The limitations of this study need to be noted. First, the 
use of a cross-sectional design restricts the establish-
ment of a direct causal relationship between identi-
fied predictors and the incidence of HFHI. Instead, this 
study provides suggestions from an aetiological per-
spective. Subsequent prospective studies are necessary 
to substantiate whether such associations are indicative 
of causal relationships. Second, our data were exclu-
sively collected from seven health centres within a single 
province of China, potentially limiting the generalizabil-
ity of the model to other regions in China with distinct 

socioeconomic and behavioural factors. In addition, 
the measurement of haematological data from different 
regions was conducted in the clinical laboratories of the 
investigated health care centres separately, which may 
introduce the potential for detection and measurement 
bias in this study.

Conclusion
In this study, we developed and validated an HFHI risk 
screening model based on seven ML algorithms that 
included demographic information, symptoms and medi-
cal history, behavioural factors, environmental expo-
sure, hearing cognition variables, and haematology test 
variables. Finally, the LASSO-based screening model 
achieved the best accuracy, and we further transformed 
it into a screenable nomogram that can be directly used 
in the community environment combined with electronic 
case information to conduct risk screening of the popu-
lation. The model can classify community residents into 
different HFHI risk categories (high-, medium- and low-
risk). The risk factors for each HI high-risk resident can 
be identified so that HI prevention or intervention can 
be personalized. Following this study, we intend to use 
the screening model to develop an early warning plug-
in tailored for electronic medical record systems, with a 
specific focus on its implementation within primary care 
settings. This initiative aims to facilitate the ongoing col-
lection of the latest data, allowing for a comprehensive 
external validation of the screening model on a larger 
scale, and eventually ascertain the viability of the instru-
ment as a nationally applicable tool for future use.
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