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Abstract 

Background  Gestational weight gain (GWG) is a routinely monitored aspect of pregnancy health, yet critical gaps 
remain about optimal GWG in pregnant people from socially marginalized groups, or with pre-pregnancy body mass 
index (BMI) in the lower or upper extremes. The PROMISE study aims to determine overall and trimester-specific GWG 
associated with the lowest risk of adverse birth outcomes and detrimental infant and child growth in these under‑
represented subgroups. This paper presents methods used to construct the PROMISE cohort using electronic health 
record data from a network of community-based healthcare organizations and characterize the cohort with respect 
to baseline characteristics, longitudinal data availability, and GWG.

Methods  We developed an algorithm to identify and date pregnancies based on outpatient clinical data for patients 
15 years or older. The cohort included pregnancies delivered in 2005–2020 with gestational age between 20 weeks, 
0 days and 42 weeks, 6 days; and with known height and adequate weight measures needed to examine GWG 
patterns. We linked offspring data from birth records and clinical records. We defined study variables with attention 
to timing relative to pregnancy and clinical data collection processes. Descriptive analyses characterize the sociode‑
mographic, baseline, and longitudinal data characteristics of the cohort, overall and within BMI categories.

Results  The cohort includes 77,599 pregnancies: 53% had incomes below the federal poverty level, 82% had public 
insurance, and the largest race and ethnicity groups were Hispanic (56%), non-Hispanic White (23%) and non-Hispanic 
Black (12%). Pre-pregnancy BMI groups included 2% underweight, 34% normal weight, 31% overweight, and 19%, 
8%, and 5% Class I, II, and III obesity. Longitudinal data enable the calculation of trimester-specific GWG; e.g., a median 
of 2, 4, and 6 valid weight measures were available in the first, second, and third trimesters, respectively. Weekly rate 
of GWG was 0.00, 0.46, and 0.51 kg per week in the first, second, and third trimesters; differences in GWG between BMI 
groups were greatest in the second trimester.

*Correspondence:
Janne Boone‑Heinonen
boonej@ohsu.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12889-024-18257-8&domain=pdf


Page 2 of 17Boone‑Heinonen et al. BMC Public Health          (2024) 24:886 

Conclusions  The PROMISE cohort enables characterization of GWG patterns and estimation of effects on child 
growth in underrepresented subgroups, ultimately improving the representativeness of GWG evidence and corre‑
sponding guidelines.

Keywords  Gestational weight gain, Body Mass Index, Pregnancy, Child, Retrospective cohort study, Electronic Health 
Records

Background
Pregnancy is a critical period for the health of birth-
ing parents and their children. Gestational weight gain 
(GWG) is an easily and routinely monitored aspect of 
pregnancy health, with higher and lower levels associ-
ated with greater risk of adverse pregnancy and birth out-
comes [1], maternal postpartum and long-term chronic 
conditions [2], and offspring health [3]. Accordingly, 
GWG guidelines from the Institutes of Medicine (IOM, 
now National Academies of Medicine) [4, 5] draw from 
extensive evidence and seek to promote healthy GWG, 
but were last updated in 2009. Critical evidence gaps 
remain for future revisions of the guidelines, particularly 
pertaining to pregnant people who have fewer resources, 
belong to marginalized racial and ethnic groups, or have 
pre-pregnancy body mass index (BMI) in the lower or 
upper extremes (underweight, class II or III obesity) [6]. 
Additionally, evidence of the effects of timing and magni-
tude of GWG on longer-term child outcomes is relatively 
scant.

These gaps are difficult to fill with traditional study 
design: prospective cohorts with longitudinal preg-
nancy measures tend to underrepresent people with low 
incomes or other socially or economically marginalized 
groups, and few data sources provide child outcomes 
beyond birth. Electronic Health Records (EHR) are a 
valuable source of repeated weight measures and out-
comes in large study populations [7, 8]. Inclusion of large 
numbers of pregnancies enables investigation of GWG 
patterns and their associations with health outcomes in 
subpopulations that are typically understudied due to 
inadequate numbers of individuals in each subgroup. 
Further, while many prior pregnancy studies that utilize 
EHR-derived data include predominately commercially 
insured patients [9–11], recently developed networks of 
community-based healthcare organizations (CHCOs) 
provide rich, longitudinal, clinical data on predomi-
nately publicly-insured or uninsured pregnant patients 
[12]. Yet EHR data pose methodological challenges due 
to the complexity of clinical data which are not designed 
for research purposes, particularly in non-integrated care 
settings.

The PReventing Obesity through healthy Maternal 
gestational weight gain In the Safety nEt (PROMISE) 

Study aims to determine overall and trimester-specific 
GWG associated with the lowest risk of adverse birth 
outcomes and detrimental infant and child growth in 
a multi-state U.S. population of CHCO patients. The 
objectives of this paper are to (1) present the meth-
ods and rationale used to (a) construct the PROMISE 
cohort and (b) develop theory- and data-driven vari-
able definitions with attention to timing relative to 
GWG and to clinical data collection processes and (2) 
characterize the cohort with respect to baseline char-
acteristics, longitudinal data availability, and GWG. 
Throughout this paper, we use neutral weight-related 
terminology (e.g., high BMI, ≥35  kg/m2) where possi-
ble, but also recognize the clinical relevance of “obesity 
classes” and the ongoing ambiguity about the preferred 
terminology for reducing weight stigma [13]. We rec-
ognize that while most pregnant people identify as 
women, pregnant people can be of any gender, and 
some are not yet adults. We primarily use the terms 
“birthing parent” or “pregnant person”, but also use 
“maternal” to differentiate characteristics of the preg-
nant person from their offspring.

Methods
ADVANCE Clinical Research Network
The PROMISE Study cohort is derived from OCHIN 
(not an acronym) data from the Accelerating Data 
Value Across a National Community Health Center 
Network (ADVANCE) Clinical Research Network [12]. 
OCHIN is a nonprofit leader in equitable health care 
innovation and a trusted partner to a growing national 
provider network. With a centralized EHR system and 
the largest collection of community health data in the 
country, OCHIN conducts practice-based research in 
clinics located in more than 20 states, building patient 
and provider engagement in research design and 
implementation at the grassroots. EHR data contain 
information from the OCHIN Epic® practice manage-
ment system (e.g., billing and appointments) as well as 
demographic, utilization, and clinical data from the full 
OCHIN EHR, much of which has been standardized 
for research in ADVANCE. The PROMISE study was 
approved by the Institutional Review Board at Oregon 
Health & Science University, the lead site for the study.
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Derivation of the PROMISE cohort
In order to study GWG in this unique and understud-
ied patient population, we built upon well-established 
research using EHR-derived pregnancy cohorts within 
integrated inpatient and outpatient settings [11, 14, 15]. 
Because OCHIN data were not linked to inpatient data 
sources during the study period, our pregnancy algo-
rithm used the extensive outpatient visit data available in 
OCHIN’s EHR to estimate pregnancy dating needed to 
define the pregnancy period. In addition, our algorithm 
defined a cohort for which OCHIN data contain meas-
ures, procedures, and diagnoses throughout the study 
period of interest, enabling longitudinal follow-up of per-
sons regardless of their health insurance status (including 
lack of insurance or changes in insurance status, com-
mon for patients receiving care at CHCOs).

Identification of pregnancies
Pregnancies were identified using a process detailed 
in Supplementary Material 1: Appendix A and sum-
marized here. Two major data sources in the EHR were 
used: Pregnancy Episodes of Care (PE) and Encounter-
based Pregnancy Records (EPR). An episode of care in 
the OCHIN EHR is initiated by a provider as a means of 
providing aggregated information from multiple encoun-
ters and data fields for a given clinical condition. A preg-
nancy-specific episode of care is typically initiated by a 
medical provider or their support staff at the onset of 
an individual’s prenatal care. PEs include variables indi-
cating date of last menstrual period (LMP), estimated 
delivery date (EDD), pregnancy outcome, gestational age 
(GA) at delivery (when known), and other pregnancy-
level information. PEs were used as our primary source 
of information. The PROMISE team also identified EPRs: 
pregnancies not associated with a PE. EPRs were defined 
based on International Classification of Diseases diagno-
sis codes (ICD-9 and ICD-10) and Current Procedural 
Terminology (CPT) procedure codes that indicate that 
the patient was pregnant at the time of an encounter. We 
used codes that were identified and classified by the Kai-
ser Permanente (KP) Center for Effectiveness and Safety 
Research for key attributes including pregnancy out-
come, GA, and fetal count. The algorithm was based on 
work from Hornbrook et al. [16], updated in the KP vir-
tual data warehouse [17] and adapted for OCHIN data by 
the PROMISE team.

Briefly, in Step 1, a preliminary set of PEs and EPRs 
were identified among OCHIN records from 1/1/2004 
through 1/4/2021, for patients 15  years or older at the 
time of encounter or pregnancy start. PEs with identi-
cal start and end dates were deduplicated, EPRs were 
assembled from encounter-level data, preliminary start 

dates were assigned based on outcome date and type 
(e.g., miscarriage or live birth), and clinical encounters 
within the preliminary pregnancy start and end dates 
were extracted. In Step 2, pregnancy start and end dates 
were refined. Start dates were calculated by subtract-
ing GA at birth, when available, from delivery date; GA 
at birth is automatically calculated in the OCHIN EHR 
when both an EDD and delivery date are available. Oth-
erwise, we used the calculated value EDD – 280  days, 
the latest prior LMP date, or the last recorded encoun-
ter diagnosis indicating weeks of gestation, in that order 
of preference. End dates were refined using birth dates of 
children who were linked to the pregnant patient within 
the OCHIN EHR [18], clinician-entered delivery date, or 
pre- and post-delivery codes, in that order of preference. 
In Step 3, overlapping or incomplete pregnancy records 
were removed or consolidated. Self-reported pregnan-
cies noted in a patient’s medical history contain limited 
patient-reported information (e.g., only pregnancy dates); 
these pregnancies were excluded if there was no addi-
tional information in the EHR. Data sources of the preg-
nancy records and pregnancy start date and end dates are 
tabulated in Supplementary Material 1: Appendix A.

Inclusion and exclusion criteria
The PROMISE study included pregnancies delivered 
between 1/1/2005 and 12/31/2020 among OCHIN health 
network patients 15  years of age or older at pregnancy 
start. Pregnancies with GA at delivery between 20 weeks, 
0 days and 42 weeks, 6 days were retained; current rec-
ommendations [19–21] are to induce labor by 41 weeks, 
though some patients choose to wait until 42  weeks. 
Therefore, GA longer than 42 weeks, 6 days was consid-
ered implausible, likely reflecting inaccurate pregnancy 
dating, and pregnancies with GA less than 20  weeks 
were assumed not to be viable. Study inclusion also 
required availability of ≥ 1 plausible adult height meas-
urement recorded at ≥ 16 years of age and plausible BMI 
and weight measures required to characterize GWG: ≥ 1 
baseline weight measure, ≥ 1 weight measure in the sec-
ond or third trimester, and ≥ 1 additional weight meas-
ure during pregnancy. Plausible height, pre-pregnancy 
BMI, and weights are defined in Study Variables. Inclu-
sion and exclusion criteria were applied at the pregnancy 
level, enabling the inclusion of multiple pregnancies per 
person. We will adjust for within-person correlation in 
future statistical analyses.

Data linkages
Linkage of parent and child clinical data
At OCHIN, EHR data from parents and children were 
linked using methods developed and validated as part of 
a multi-site National Patient-Centered Clinical Research 
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Network (PCORnet) demonstration project [22] and sub-
sequent ADVANCE research [18]. Our linkage methods 
overcame two data-related challenges in OCHIN data: 
(a) our data warehouse does not include inpatient data, a 
common source of maternal-child linkages resulting from 
hospital-based birth of the child; and (b) as of 2014, Med-
icaid no longer records household identifiers, which was 
previously used to link family members in OCHIN clin-
ics located in Oregon [23]. Briefly, explicit, imputed, and 
fuzzy matches were performed using data available in 
ADVANCE [18]. Explicit documentation of parent–child 
relationships included the child ID listed in the parent’s 
guarantor account information, obstetric claim form, or 
mother listed in the child’s emergency contact informa-
tion.  Imputed relationships  included patient matches 
on geocoded coordinates for each patient’s last known 
address, or home phone number.  Fuzzy matches  com-
pared free-text mother emergency contact demograph-
ics against the list of female patients 18  years older in 
ADVANCE. Parent–child linkages  included 66%  with 
explicit linkage, 34% with imputed linkage, and < 1% with 
fuzzy linkage at the time of the PROMISE Study.

Birth record linkage
The subset of EHR pregnancies observed in California, 
Oregon, and Washington are being linked to birth record 
data using LinkPlus, a linkage program developed by the 
CDC [24] and LinkPlus-described procedures including 
data standardization, calculation of linkage score, and 
clerical review of matches with uncertain linkage scores. 
Birth record linkage details are presented in Supplemen-
tary Material 1: Appendix B. As of February 2024, Ore-
gon and California linkages were complete, with pending 
data acquisition from the state of Washington. Link-
age rates were 88% and 89% for Oregon and California, 
respectively.

GIS data linkage
ADVANCE patient residential addresses are continu-
ously updated and geocoded, mapped to geographic 
units (e.g., county, census tract), and linked to US Census 
and other national data sources [25]. In the ADVANCE 
population, 75.4% of residential addresses have been geo-
coded to street address level, 1.6% to street segment, and 
23.1% to postal/ZIP code levels.

Study variables
Anthropometry of the birthing person
Maternal weights were extracted from EHR encoun-
ters. Plausible weights were defined in two stages. First, 
weights < 36.3  or > 453.6  kg (< 80 or > 1000 pounds) 
were discarded (n = 323, < 0.01%). Second, we identified 
pregnancy-specific outliers based on deviation of each 

measure from temporally adjacent weight measures 
for the same pregnancy, within each trimester; details 
are described in Supplementary Material 1: Appendix 
C. This longitudinal algorithm was adapted from prior 
work conducted by Sharma and colleagues using preg-
nancy-related data from the EHR of the Kaiser Perma-
nente Northwest Health Care System [11]. Plausible 
weights were then used to define baseline and preg-
nancy weights.

Baseline weight  In order to minimize the number of 
pregnancies excluded due to lack of available baseline 
weight, we selected the weight closest to pregnancy start 
date, within 365  days prior to and 97  days after preg-
nancy start date. Among included pregnancies, the mean 
duration between the selected weight and pregnancy 
start date was 7.80 weeks (SD 6.26 weeks); 66,874 (96%) 
of baseline pregnancy weight measures were taken within 
97  days (< 14  weeks) from pregnancy start, with the 
majority of these measures (83%) from after pregnancy 
start. Among 19,006 pregnancies with baseline weight 
measures from the first 97  days of pregnancy that also 
had pre-pregnancy weight measurements up to 97  days 
before the pregnancy, the median absolute difference in 
pregnancy-specific weights was 1.4  kg (25th, 75th per-
centile: 0.5, 2.5).

When encounter-level baseline weight was unavailable, 
we used patient-reported pregravid weight (n = 7,869, 
11%), which was contained in a data field specific for this 
information in the prenatal vitals section of the EHR. In 
38,228 pregnancies in which both sources were available, 
correlation between encounter-level baseline weight and 
pregravid weight was 0.99.

Height  was defined as the median height among all 
height measures in the patient’s chart since their 16th 
birthday. Plausible heights were defined to align with 
prior literature (48–84 inches [26] [121.9–213.4 cm]).

Baseline Body Mass Index (BMI)  Height and baseline 
weight were used to calculate baseline BMI, used as an 
approximation of pre-pregnancy BMI. Plausible BMI 
was defined based on prior studies (12–100 kg/m2) [27]. 
BMI was analyzed as both a continuous and categorical 
variable [28]: Underweight (< 18.5 kg/m2), Normal (18.5 
to < 25  kg/m2), Overweight (25 to < 30  kg/m2), Obesity 
Class I (30 to < 35 kg/m2), Obesity Class II (35 to < 40 kg/
m2), and Obesity Class III (≥ 40 kg/m2).

Pregnancy weights  Weights recorded during the preg-
nancy episode were classified into first (0 to < 14 weeks), 
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second (14 to < 28 weeks), or third (28 weeks-end of preg-
nancy) trimester.

GWG​  Total GWG was calculated as last pre-delivery 
weight minus pre-pregnancy weight, limited to term 
pregnancies for which the last pre-delivery weight was 
within 2  weeks of the delivery date. Adherence to IOM 
guidelines for total GWG was determined based on total 
GWG and pre-pregnancy BMI category (below, within, 
or above BMI-specific guidelines), among term pregnan-
cies [5]. Trimester-specific weight gain (total kg, and kg 
per week) was calculated by fitting a simple linear regres-
sion model to measured weights within each trimester 
for each pregnancy, as described by Abrams & Selvin [29] 
and applied by others [30]; among pregnancies with two 
or more observed weights, at least one week apart, in any 
given trimester. Time coefficients indicate rate of weight 
gain per week, for each trimester within each pregnancy.

Pregnancy and child outcomes

Gestational age at delivery (GA)  GA at delivery was 
calculated within the OCHIN EHR for pregnancies with 
recorded EDD and delivery date (74%); otherwise, we cal-
culated GA at delivery from start and end dates, defined 
above (Identification of pregnancies). GA is categorized 
as preterm birth (GA < 37 completed weeks) and term/
postterm (GA (≥ 37 completed weeks). Spontaneous 
and medically indicated preterm birth are secondary 
outcomes.

Infant size at birth  We extracted birth weight from 
the PE where available; birth records provide a second-
ary source within the subset with linked birth records 
(Oregon, California, Washington deliveries). We 
defined implausible birth weights based on gestational 
age- and sex-specific z-scores originally described by 
Alexander et  al. [31] and applied by others [32, 33]: for 
GA ≥ 37 weeks, < -5 or > 5 SD, and for GA < 37 weeks, < -4 
or > 3 SDs calculated within the PROMISE cohort. Size 
for GA was calculated as an indicator of fetal growth 
using the reference curve published by Talge et  al. [32], 
enabling calculation of both categorical and continuous 
measures of birth size, and incorporating clinical esti-
mates of GA, which are more accurate than LMP and 
readily available in the EHR. Size for GA will be exam-
ined in primary analysis as small [< 10th percentile; SGA], 
appropriate, and large for gestational age [> 90th; LGA]) 
[31, 34, 35]; and in secondary analysis, using lower SGA 
[36] or higher LGA [37] cut points that are more clini-
cally meaningful, and as a semi-continuous variable [38]. 
For comparison with prior literature, we will examine 

birth weight as a secondary outcome, classified as very 
low (< 1.5 kg; VLBW), low (< 2.5 kg; LBW), normal, and 
high (> 4.5 kg; HBW) birth weight.

Child anthropometry  We extracted child body weight 
and length or height, measured on the same day, 
from clinical encounter records through 1/12/2023. 
Length (for children < 24  months) and height (for chil-
dren ≥ 24 months) were recorded in a single field. Longi-
tudinal data availability for child weights and heights for 
the ADVANCE population has been previously reported 
[39] and will be presented for the PROMISE cohort in 
forthcoming outcomes analyses.

We will examine infant growth from birth to 18 months 
of age, which includes the infant BMI peak (typically at 
8–9  months but as late as 17  months) [40, 41]. We will 
examine growth both in length (cm) and weight (kg), 
because drivers of weight gain versus length increase 
differ [42, 43], and explore differences in children born 
preterm versus full term. For descriptive analysis, we will 
calculate weight-for-age and length-for-age percentiles 
and z-scores relative to the World Health Organization 
(WHO) standard growth curve [44]. We will also explore 
early life changes in BMI; BMI assesses weight independ-
ent of height [45], an indirect measure of adiposity, and 
it performs better than weight-for-length, even in very 
young children [46, 47].

To approximate weight status at the critical transition 
period of school entry, we selected height and weight 
measured closest to 5  years of age, among measures 
when children were 4 to < 6 years of age. BMI was calcu-
lated and converted to age- and sex-specific BMI percen-
tiles using Centers for Disease Control and Prevention 
(CDC) 2000 growth curves [48], which is recommended 
for children 2 years or older [24]. Our primary outcome 
is continuous BMI z-score, with extended BMI z-score as 
an alternate outcome that may perform better in children 
with very high BMI [49]. Our secondary outcome is BMI 
classification: underweight (< 5th percentile), normal 
weight (5th to < 85th), overweight (85th to < 95th), obe-
sity (95th to < 20% higher than 95th), and severe obesity 
(≥ 20% higher than 95th percentile) [50].

Covariates
We anchored the identification and definition of covari-
ates to our causal framework (Fig. 1).

Age of the pregnant person at the EDD was calculated 
by subtracting the date of birth of the birthing person 
from the EDD. Clinical care processes are based on age 
at EDD; for example, designation of pregnancies as hav-
ing “advanced maternal age” when the birthing person 
is ≥ 35 years of age at expected delivery.
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Race and ethnicity are recorded in the patient table in 
separate fields. In contrast to concerns about missing 
race and ethnicity information in claims and clinical data 
[51, 52], CHCOs are federally required to report race 
and ethnicity, supporting a high degree of completeness 
in our study population. We combined race and ethnic-
ity into a single variable based on recent guidelines [53], 
which recognize that race categories typically used in 
the U.S. are not interpretable for many Hispanic people, 
resulting in misclassification into white or “other” race or 
a high level of missingness in the race variable [54]. We 
created the following race and ethnicity categories, which 
use the most granular race categories recorded in the 
EHR: Hispanic, Non-Hispanic [NH] American Indian/
Alaska Native, NH Asian, NH Black, NH Native Hawai-
ian/Other Pacific Islander, NH other/multiple, NH white, 
unknown. For secondary analyses, more granular race 
categories will be obtained from birth records among the 
subset with linked birth record data. We examine race 
and ethnicity as social variables [53, 55], reflecting a con-
stellation of social, cultural, historical, and interpersonal 
processes that impact family resources, individual behav-
iors, experience of psychosocial stress, and biased clinical 
care delivery that can impact body weight and/or preg-
nancy and child health.

Preferred spoken language is recorded in the patient 
demographics table (English, Spanish, other, unknown). 
We examine preferred language as a proxy for cul-
tural and social factors that influence body weight and 

pregnancy and child health, as well as an indicator of lan-
guage barriers that can influence clinical care.

State of residence was obtained from the patient demo-
graphics table and reflects the most recently reported 
state of residence at the time of data extraction. For 
descriptive purposes, states were classified as Oregon, 
Washington, California, and other; these categories 
reflect the predominant states represented in the PROM-
ISE study population. We examine state of residence as a 
proxy for geographically-patterned determinants of preg-
nancy and child health, including variations in clinical 
practice across states.

Education at the time of delivery and parity are avail-
able in the birth record, among the subset with linked 
birth records. Education will be categorized as less than 
high school, high school, some college, college comple-
tion or higher and examined as a dimension of socioeco-
nomic position. Parity is a known determinant of body 
weight and pregnancy and child health; it will be catego-
rized as nulliparous or multiparous.

Income level, payer type, and smoking status were 
obtained from encounter-level data and were defined 
based on several considerations: the time period(s) of 
interest, degree of missingness in the target time period, 
and frequency and process of data collection in CHCOs.

Income as a percentage of the federal poverty level 
(%FPL) is collected by most CHCOs for reimbursement 
purposes. Household income (USD), state of residence, 
most recent family size, and year- and region-specific 
U.S. poverty guidelines are used to calculate %FPL. Given 

Fig. 1  Conceptual framework
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that income destabilizes at around mid-pregnancy in 
the general population [56], we sought to measure %FPL 
prior to or early in pregnancy to establish temporal 
order prior to the exposure of interest. However, defin-
ing %FPL within a specific perinatal period is not possi-
ble with the existing data collection process: last known 
%FPL is requested from patients approximately every 
6–12 months. Thus, we selected the %FPL value recorded 
closest to pregnancy start, within 365 days prior to preg-
nancy through the end of pregnancy. This time frame 
reduced the number of pregnancies with missing data 
while, based on preliminary analysis, approximating FPL 
early in pregnancy. For the purposes of this paper, we 
classified FPL as ≤ 100%, 101–200%, > 200%, or unknown 
to characterize the income levels in this cohort.

Payer type is recorded at each encounter. We classi-
fied payer type as public (Medicaid and Medicare), pri-
vate, other non-comprehensive insurance (e.g., worker’s 
compensation, auto, life, farmer’s insurance, private plans 
specific to dental/vision care, and grant/pilot study cov-
erage), or uninsured. Our goal was to capture insurance 
and payer status most likely to impact pregnancy health, 
while recognizing the temporal patterns in insurance 
throughout pregnancy and that intermittently recorded 
payer changes are unlikely to reflect actual changes in 
payer type. Therefore, we selected the predominant payer 
type throughout the second and third trimesters, defined 
as the payer type reported at the greatest number of vis-
its. If there was an equal number of visits with multiple 
payer types, the following hierarchy was applied: Medic-
aid, Medicare, other public, private. This approach was 
informed by preliminary analysis showing that payer 
type changes in early pregnancy, largely due to Medic-
aid eligibility expansion during pregnancy [57]. Further, 
we do not expect that first trimester weight gain would 
influence changes in insurance; that is, second and third 
trimester payer type is unlikely to be a mediator of the 
association between GWG and child outcomes.

Tobacco use is collected at each encounter as required 
by EHR-Meaningful use [58]; here, we report use of any 
tobacco product (smoking or smokeless tobacco). Given 
well-known changes in tobacco use during pregnancy, 
potential time-specific effects of tobacco use on weight 
gain, and preliminary analysis that indicated frequent 
updates and suggested that changes from current to for-
mer user are maintained for the remainder of the preg-
nancy, we defined tobacco use within two time periods: 
pre-pregnancy to early pregnancy (365  days prior to 
pregnancy start through 12 weeks of gestation) and mid-
late pregnancy (13 weeks of gestation through the end of 
pregnancy). In each time period, tobacco use was classi-
fied as current (current user at ≥ 1 encounters during the 
time period), former (no reports of current usage, former 

user at ≥ 1 encounters during the time period), never (no 
reports of current or former usage, never or passive/envi-
ronmental use at ≥ 1 encounters during the time period) 
user, or unknown. Fewer than 1% reported passive/
environmental use, likely reflecting substantial under-
reporting; therefore, we are unable to examine passive/
environmental use as a separate category.

Maternal conditions include pregestational and gesta-
tional diabetes mellitus (DM), pre-existing hypertension 
(HT), and other hypertensive disorders of pregnancy 
(HDP, including gestational hypertension, preeclampsia, 
and eclampsia). Pregestational DM was defined as 2 or 
more encounters with ICD 9 or 10 code indicating DM, 
or any DM codes on the problem list with onset before 
pregnancy. GDM was defined as 2 or more GDM ICD 9 
or 10 codes in the encounter table during pregnancy or 
any GDM code on the problem list. HT and other HDP 
were identified using ICD 9 and 10 codes in encounters 
or the problem list and evidence of elevated blood pres-
sures in the clinical record. GDM and HDP (exclud-
ing HT) are considered mediators in our conceptual 
framework and will be used in secondary or sensitivity 
analyses.

Child sex (male, female, unknown) is available for PE 
records or with patient demographic information among 
children who are also OCHIN patients.

Community-level variables were obtained from linked 
GIS data. The residential period of interest is during 
pregnancy; we extracted GIS data corresponding to the 
residential location recorded closest to the start of preg-
nancy. Community-level variables include sociodemo-
graphic composition (racial composition, median income, 
US Census tract); modified Retail Food Environment 
Index (census tract, CDC); recreation facilities, fast food 
restaurants, food stores (census tract, US Census Business 
Patterns), and air quality (County, Environmental Pro-
tection Agency).

Statistical analysis
We conducted a series of descriptive and longitudinal 
analyses that inform key factors required to investigate 
GWG trajectories within pre-pregnancy BMI categories 
in our unique population.

Study population characteristics
We describe the baseline sociodemographic and clini-
cal characteristics of our pregnancy cohort and those 
excluded from the cohort. Given our objective of estimat-
ing effects of GWG trajectories on pregnancy and child 
outcomes among birthing persons across the spectrum 
of body size, we also present descriptive characteristics 
within each pre-pregnancy BMI classification. We focus 
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on the magnitude of group differences rather than statis-
tical testing, given our large sample size.

Frequency and timing of GWG data collection
We evaluated the number and timing of pregnancy 
weight measures, which influence the ability to charac-
terize and analyze GWG trajectories. Specifically, we cal-
culated the average number of weight measures available 
for each pregnancy, within the total pregnancy period 
and within trimesters. Data characteristics for children 
in the OCHIN health system were reported in a previous 
publication [39].

Results
Derivation of the study cohort
The pregnancy algorithm identified 103,366 pregnan-
cies that started between 4/16/2004 and 7/6/2020 
among OCHIN health network patients 15  years of 
age or older at the start of pregnancy (Fig.  2). Among 
these, 1,942 pregnancies (1.9%) were excluded due to 
GA less than 20  weeks or over 43  weeks at delivery 
(< 200 or > 426 weeks). Exclusions due to lack of required 
anthropometry data included 1,650 (1.6%) without a 
known height, and, among the remaining 99,774 preg-
nancies, 18,430 (18.5%) without a baseline weight meas-
ure, 1,688 (2.1%) with no measure in either the second 
or third trimester, and 2,057 (2.6%) with no additional 
measure during pregnancy. Thus, the PROMISE cohort 
includes 77,599 pregnancies lasting 20 to 42 weeks with 
adequate height and weight measures needed to examine 
GWG patterns.

Sociodemographic and baseline characteristics
PROMISE cohort members had a mean age of 27.9 years 
at delivery, spanning from < 20  years (8.0%) to 40  years 
and older (3.2%) (Table  1). The largest race and ethnic-
ity group was Hispanic (56.5%), followed by NH white 
(22.7%) Black (12.1%), and Asian (4.2%). The study popu-
lation included small proportions (< 1%) but substantial 
absolute numbers (n > 300) of people with NH Native 
Hawaiian/Pacific Islander or American Indian/Alaska 
Native race and ethnicity. Over half (53.0%) of the sample 
had incomes below the poverty level and most had public 
insurance (82.2%), though with substantial groups who 
were uninsured (7.6%) or with private insurance (9.5%). 
The most common preferred spoken languages were 
English (55.0%) and Spanish (37.8%). Cohort members 
resided predominately in California (38.5%) and Oregon 
(27.2%), with the remainder from Washington or other 
states (6.3 and 27.9%, respectively).

Compared to included pregnancies, excluded preg-
nancies were slightly younger, had lower income, were 
more likely to be uninsured or have unknown insur-
ance type, and were more likely to live in Washington 
(Table 1). However, the overall racial/ethnic composition 
was similar between included and excluded pregnancies. 
Tobacco use is more likely to be unknown in excluded 
pregnancies. Utilization patterns were consistent with 
exclusions due to lack of pre-pregnancy or pregnancy 
weights, as well as the focus on pregnancies for which 
OCHIN clinics provided prenatal care. That is, the first 
pregnancy encounter occurred after the first trimester in 
the vast majority of excluded pregnancies (85.8%); 13.4% 

Fig. 2  Flow chart
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Table 1  Characteristics of pregnant individuals, per pregnancy, in the PROMISE Study Populationa

Excluded (n = 12,667) Included (n = 77,599)

Age at delivery [mean (SD)] 27.0 (6.3) 27.9 (6.1)

Age at delivery [n (%)]

   < 20 years 1427 (11.3) 6208 ( 8.0)

  20 to < 25 years 3633 (28.7) 18,915 (24.4)

  25 to < 30 years 3329 (26.3) 22,198 (28.6)

  30 to < 35 years 2535 (20.0) 17,979 (23.2)

  35 to < 40 years 1350 (10.7) 9811 (12.6)

  40 + years 393 ( 3.1) 2488 ( 3.2)

Race and ethnicity

  NH-White 2732 (21.6) 17,617 (22.7)

  NH-Black 1962 (15.5) 9419 (12.1)

  NH-Asian 562 ( 4.4) 3286 ( 4.2)

  NH-Native HI/PI 186 ( 1.5) 408 ( 0.5)

  NH AI/AN 51 ( 0.4) 349 ( 0.4)

  NH-other 111 ( 0.9) 641 ( 0.8)

  Hispanic 6620 (52.3) 43,876 (56.5)

  Unknown 443 ( 3.5) 2003 ( 2.6)

Preferred spoken language

  English 7061 (55.7) 42,710 (55.0)

  Spanish 4378 (34.6) 29,338 (37.8)

  Other 1213 ( 9.6) 5511 ( 7.1)

  Unknown 15 ( 0.1) 40 ( 0.1)

Region

  OR 3716 (29.3) 21,089 (27.2)

  CA 3798 (30.0) 29,885 (38.5)

  WA 1556 (12.3) 4900 ( 6.3)

  Other 3586 (28.3) 21,677 (27.9)

  Unknown 11 ( 0.1) 48 ( 0.1)

Income as a percent of FPL

  0–50% 4537 (35.8) 23,006 (29.6)

  > 50–100% 2399 (18.9) 18,062 (23.3)

  > 100–200% 1923 (15.3) 15,299 (19.7)

  > 200% 549 ( 4.3) 4539 ( 5.8)

  Unknown 3249 (25.6) 16,693 (21.5)

Insurance status

  Uninsured 1364 (10.8) 5864 ( 7.6)

  Public 9224 (72.8) 63,816 (82.2)

  Private 584 ( 4.6) 7392 ( 9.5)

  Unknown 1495 (11.8) 527 ( 0.7)

Tobacco use (pre-pregnancy to early pregnancy)

  Current 327 ( 2.6) 6750 ( 8.7)

  Former 202 ( 1.6) 6163 ( 7.9)

  Never 1111 ( 8.8) 37,646 (48.5)

  Unknown 11,027 (87.1) 27,040 (34.8)

Tobacco use (mid-late pregnancy)

  Current 936 ( 7.4) 5663 ( 7.3)

  Former 1206 ( 9.5) 9630 (12.4)

  Never 5698 (45.0) 51,182 (66.0)

  Unknown 4827 (38.1) 11,124 (14.3)
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of excluded pregnancies had no pregnancy encounters in 
the second or third trimesters.

PROMISE cohort members span the full spectrum of 
pre-pregnancy BMI: 2.1% underweight, 33.8% normal 
weight, 31.3% overweight, 32.7% obesity (18.9% Class I, 
8.4% Class II, 5.4% Class III) (Table 2). In general, those 
with incrementally higher BMI tended to be older, have 
greater representation of Hispanic and Black patients, 
have lower income, and were more likely to have public 
insurance. In two exceptions, Black race and the low-
est income level (≤50% FPL) were also more common 
in those with underweight. Current tobacco use prior 
to pregnancy was highest in those with underweight or 
Class III obesity, while tobacco use during pregnancy was 
highest in those with underweight. State of residence and 
utilization patterns were similar across BMI categories, 
although those with obesity were slightly more likely to 
have an early pregnancy (< 6 weeks) encounter.

Longitudinal data characteristics
We examined aspects of longitudinal data availability that 
impacts the ability to calculate total and trimester-spe-
cific GWG using observed weight measures, both overall 
and within each pre-pregnancy BMI category (Table  3). 
In the overall cohort, the last observed pregnancy weight 
measure was recorded in encounters a median of 5 days 
prior to delivery, and within 2 weeks of delivery for 78.0% 
of pregnancies. A median of 2, 4, and 6 valid weight 
measures were available in the first, second, and third 
trimesters, respectively. The number of available weight 
measures varied substantially: for example, 10% had only 
1 measure while 10% had ≥9 measures in the third tri-
mester. 68.0, 88.2, and 88.0% of the cohort had a sufficient 

number of weight measures (≥2 measures within any 
given trimester) needed to calculate rate of weight gain 
within the first, second, and third trimesters, respectively. 
In our data, we observed substantial variability due to 
calculation of weight gain rates based on closely spaced 
measures; therefore, we also report number and percent 
of pregnancies with at least 2 measures, at least one week 
apart, within any given trimester: 63.9, 87.2, and 88.0% 
of pregnancies in the first, second, and third trimesters, 
respectively. The availability of pregnancy weights was 
generally similar across pre-pregnancy BMI categories.

Gestational weight gain
Among term pregnancies with a weight within 2  weeks 
prior to the delivery date (n = 56,503), mean total GWG 
calculated from observed weights was 11.8 kg (Table 4). 
Within this subset, total GWG was below IOM/NAM 
recommendations for 25.7% of pregnancies and above 
recommendations in 42.6% of pregnancies. Among all 
pregnancies with ≥2 measures at least one week apart 
within a given trimester (n = 49,569, 67,708, and 67,822, 
respectively), weekly rate of weight gain was 0.00, 0.46, 
and 0.51  kg per week in the first, second, and third tri-
mesters. Total GWG and second trimester GWG were 
incrementally lower with higher pre-pregnancy BMI; this 
pattern was also reflected in percentages gaining below 
or above IOM/NAM recommendations. In the first tri-
mester, those with underweight exhibited the great-
est weight gain, while average weight loss was observed 
in those with obesity class I, II, and III. Third trimester 
GWG was more similar across BMI categories, though 
with slightly lower GWG with higher BMI.

a Data shown are at the pregnancy level and include multiple pregnancies for some patients; pregnancies were among 74,776 individuals total, and 65,179 individuals 
included in the PROMISE cohort

Table 1  (continued)

Excluded (n = 12,667) Included (n = 77,599)

Gestational age at first pregnancy encounter (weeks)

  < 6 weeks 1051 ( 8.3) 20,772 (26.8)

  6 to < 9 weeks 570 ( 4.5) 24,451 (31.5)

  9 to < 14 weeks 179 ( 1.4) 19,908 (25.7)

  14 to < 28 weeks 7609 (60.1) 10,020 (12.9)

  28 + weeks 3258 (25.7) 2448 ( 3.2)

Total number of pregnancy encounters in the second and third trimester

  0 1695 (13.4) 11 ( 0.0)

  1–2 193 ( 1.5) 4776 ( 6.2)

  3–5 3950 (31.2) 9438 (12.2)

  6–10 5173 (40.8) 34,240 (44.1)

  11–15 1536 (12.1) 25,633 (33.0)

  16 +  120 ( 0.9) 3501 ( 4.5)
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Table 2  Pre- or early-pregnancy characteristics of included pregnant individuals, per pregnancy, in the PROMISE Study Population, 
stratified by pre-pregnancy BMI category

Underweight 
(< 18.5)

Normal
(18.5 to < 25)

Overweight
(25 to < 30)

Obesity Class I
(30 to < 35)

Obesity Class II
(35 to < 40)

Obesity 
Class III 
(40 +)

N 1658 26,262 24,310 14,673 6536 4160

Age at delivery [mean (SD)] 24.7 (5.4) 26.7 (6.0) 28.3 (6.1) 29.0 (6.1) 28.7 (5.9) 28.9 (5.6)

Age at delivery [%]

  < 20 years 16.8 11.7 7.0 5.1 4.7 2.9

  20 to < 25 years 36.9 28.1 22.8 20.8 21.9 21.5

  25 to < 30 years 27.0 28.3 28.6 28.2 29.6 31.4

  30 to < 35 years 13.9 20.4 24.5 25.1 25.5 26.5

  35 to < 40 years 4.4 9.4 13.7 16.2 14.4 14.6

  40 + years 1.0 2.1 3.5 4.7 3.9 3.2

Race and ethnicity

  NH-White 30.2 29.0 19.0 17.3 20.3 24.4

  NH-Black 17.5 11.4 10.8 12.2 14.6 18.8

  NH-Asian 12.8 7.0 3.3 2.0 1.3 0.8

  NH-Native HI/PI <1 0.3 0.4 0.7 1.0 1.1

  NH AI/AN <1 0.4 0.4 0.5 0.7 1.1

  NH-other 1.7 0.9 0.6 0.7 1.1 1.2

  Hispanic 33.6 47.7 63.1 64.6 58.8 50.7

  Unknown 3.4 3.2 2.4 2.0 2.3 2.0

Preferred spoken language

  English 69.2 59.0 47.7 50.1 62.0 73.5

  Spanish 16.7 31.4 45.5 44.5 33.9 24.1

  Other 13.9 9.5 6.7 5.4 3.9 2.3

  Unknown <1 0.1 0.0 0.0 0.1 0.0

Region

  OR 26.1 27.8 27.1 27.0 26.8 25.6

  CA 33.6 38.9 39.4 38.5 37.2 35.1

  WA 6.9 6.2 6.1 6.1 6.8 8.0

  Other 33.4 27.1 27.3 28.3 29.2 31.2

  Unknown <1 0.1 0.0 0.1 0.0 0.0

Income as a percent of FPL

  0–50% 38.8 30.6 28.0 28.4 30.5 33.1

  > 50–100% 18.8 20.0 24.8 26.3 24.9 23.4

  > 100–200% 15.1 18.9 20.6 20.4 20.2 18.8

  > 200% 5.5 6.8 5.5 5.4 5.1 4.8

  Unknown 21.7 23.8 21.1 19.5 19.4 20.0

Insurance status

  Uninsured 6.9 8.1 7.9 7.0 6.6 5.6

  Public 83.8 79.3 82.8 84.4 84.6 85.6

  Private 8.4 12.0 8.6 7.8 8.1 8.2

  Unknown <1 0.6 0.7 0.7 0.7 0.7

Tobacco use (pre-pregnancy to early pregnancy)

  Current 13.4 9.0 7.1 7.9 10.7 13.6

  Former 6.2 8.0 7.1 7.4 9.5 12.3

  Never 38.1 44.4 51.5 52.6 49.3 45.1

  Unknown 42.3 38.5 34.2 32.1 30.5 29.0

Tobacco use (mid-late pregnancy)

  Current 14.1 8.1 6.0 5.9 8.4 10.0
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Discussion
The PROMISE cohort is a unique pregnancy cohort of 
over 77,000 systemically underserved patients. We lever-
aged outpatient data from a national network of CHCOs 
to identify and date pregnancies, then extracted and used 

longitudinal anthropometric and other clinical meas-
ures to create study variables that align with our concep-
tual framework and clinical data collection processes. 
Our study population provides substantial numbers of 
understudied subgroups, including racial and ethnic 

Table 2  (continued)

Underweight 
(< 18.5)

Normal
(18.5 to < 25)

Overweight
(25 to < 30)

Obesity Class I
(30 to < 35)

Obesity Class II
(35 to < 40)

Obesity 
Class III 
(40 +)

  Former 12.3 12.8 10.7 11.7 14.8 19.0

  Never 57.7 63.7 68.8 69.0 64.2 58.6

  Unknown 15.9 15.4 14.5 13.4 12.6 12.4

Gestational age at first pregnancy encounter (weeks)

  < 6 weeks 23.3 24.2 26.7 29.0 29.9 32.1

  6 to < 9 weeks 29.2 30.5 32.3 31.8 32.5 32.0

  9 to < 14 weeks 23.9 26.6 25.9 25.4 23.9 22.6

  14 to < 28 weeks 18.0 14.7 12.3 11.5 11.4 10.7

  28 + weeks 5.6 4.1 2.7 2.4 2.3 2.5

Total number of pregnancy encounters in the second and third trimester

  0 0.0 0.0 0.0 0.0 0.0 0.0

  1–2 7.4 5.7 5.9 6.2 7.1 8.8

  3–5 14.2 12.4 11.4 11.8 12.7 14.7

  6–10 48.0 46.1 44.0 42.7 42.0 39.5

  11–15 27.4 32.5 34.2 33.7 32.5 30.4

  16 +  3.0 3.3 4.6 5.5 5.7 6.5

Table 3  Longitudinal follow-up of included pregnant individuals in the PROMISE Study Population

Maternal pre-pregnancy BMI classification

Total Underweight Normal weight Overweight Obesity Class I Obesity Class II Obesity Class III

Total number of pregnancies 77,599 1658 26,262 24,310 14,673 6536 4160

Days between last observed 
weight measure and delivery 
date [median (10th, 90th %ile)]

5 (1, 46) 5 (1, 50) 5 (1, 43) 5 (1, 43) 5 (1, 46) 6 (1, 53) 6 (1, 63)

Pregnancies with last 
observed weight measure 
within 2 weeks of the delivery 
date (%)

78.0 75.1 79.4 78.5 77.3 75.6 73.0

Number of valid weight measures [median (10th, 90th %ile)]

  First trimester 2 (0, 5) 2 (0, 4) 2 (0, 4) 2 (0, 5) 2 (0, 5) 2 (0, 5) 2 (0, 5)

  Second trimester 4 (1, 6) 3 (1, 5) 3 (1, 5) 4 (1, 6) 4 (1, 6) 4 (1, 6) 4 (1, 6)

  Third trimester 6 (1, 9) 5 (1, 9) 6 (1, 9) 6 (1, 9) 6 (1, 9) 6 (1, 9) 5 (0, 9)

Pregnancies with 2 + valid weight measures in each trimester (%)

  First trimester 68.0 60.2 64.7 69.3 70.5 70.4 71.6

  Second trimester 88.2 84.3 87.4 89.1 89.0 88.1 86.8

  Third trimester 88.0 85.9 88.9 88.6 88.0 86.1 82.5

Pregnancies with 2 + valid weight measures, at least one week apart, in each trimester (%)

  First trimester 63.9 55.9 60.3 65.3 66.5 66.7 67.6

  Second trimester 87.2 82.9 86.3 88.2 88.2 87.3 85.8

  Third trimester 88.0 85.1 88.3 88.0 87.3 85.5 81.9
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groups traditionally underrepresented in research, very 
low-income groups, and uninsured patients. These data 
also provide extensive longitudinal measures needed to 
characterize and study GWG across the BMI spectrum, 
including underweight and obesity classes II and III.

A key contribution of this study is the derivation of 
the PROMISE cohort – including identification of preg-
nancies and follow-up in linked children – from CHCO 
outpatient records. The OCHIN network of CHCOs 
serves an exceptionally large and diverse patient pop-
ulation, using a data structure that provides more 
longitudinal detail as compared to most existing preg-
nancy-research data resources (i.e., not relying only on 
inpatient data and/or health care claims). However, lack 
of inpatient data does provide unique methodologi-
cal challenges for pregnancy research, due to the lack 
of childbirth-related claims data. Our pregnancy algo-
rithm can inform construction of similar cohorts in 
other patient populations without integrated hospital 
data.

Indeed, the PROMISE cohort provides greater rep-
resentation of lower resourced, more racially and eth-
nically diverse patients than most existing cohorts. 
Among PROMISE cohort members, 69% were Hispanic 
or non-Hispanic Black, 90% were publicly insured or 
uninsured, and over half had incomes below the fed-
eral poverty level. In comparison, pregnancy cohorts 
derived from EHR data from integrated care organiza-
tions include, for example, 9 to 31% Hispanic or non-
Hispanic Black, with ≤5% Medicaid patients [11, 14]. 
Other EHR-derived cohorts such as samples from the 
Magee Women’s Hospital in Pittsburgh [34] offer dif-
ferent dimensions of diversity (28% Black, 40% public 
insurance). Prospective cohorts are often higher SES 

(e.g., 63.3% [59] or 44% [60] college graduate or higher 
education, 64.8% with incomes 350% FPL or higher 
[61]), though with notable examples of high represen-
tation in single-site studies [62, 63] or national stud-
ies that either do not follow children after birth [64] or 
were recruited prior to the rise in obesity prevalance 
[65, 66].

A second key contribution is our set of explicit, the-
ory- and data-driven variable definitions with attention 
to timing relative to the pregnancy-related exposure 
and clinical data collection processes. EHR data are 
derived from clinical visits that occur with variable fre-
quency, determined by a complex set of factors includ-
ing health status, health care access, and personal and 
structural barriers [7]. EHR data are also influenced by 
clinical workflow and structure of the EHR platform. As 
a result, data availability within specific time periods can 
be sparse or, in cases like “last known FPL”, misleading. 
This is particularly pertinent for pregnancy research: 
pregnancy is a period of dynamic clinical, behavioral, and 
social changes, and factors during specific perinatal time 
frames have distinct impacts on health of the pregnant 
person and the offspring. We anchored our study vari-
able definitions in an explicit conceptual framework and 
adapted the definitions to the realities of data availabil-
ity and data collection processes in our CHCO context. 
By including detailed definitions and rationale, we hope 
these processes can be applied and tested further in other 
EHR-based study populations.

A third contribution is the quantification of the 
data needed to measure GWG across the BMI spec-
trum. The PROMISE cohort has a median of 2, 4, and 6 
weight measures in the first, second, and third trimes-
ters, respectively, with similar availability across BMI 

Table 4  Total and trimester-specific GWG calculated from observed weights among included pregnancies [mean (SE) unless 
otherwise noted]

a Among pregnancies with a weight measure within 2 weeks of delivery that also qualify as full-term (at least 37 weeks)
b Requiring 2 or more valid weight measurements, at least 1 week apart

Maternal pre-pregnancy BMI classification

N Total Underweight Normal weight Overweight Obesity Class I Obesity Class II Obesity Class III

Total GWG (kg)a 56,503 11.85 (6.49) 14.80 (5.25) 14.10 (5.48) 11.95 (6.04) 9.93 (6.48) 8.57 (7.03) 6.88 (7.92)

Total GWG (adherence to IOM/NAM recommendations)a (%)

  < recommendations 56,503 25.7 35.3 30.8 18.6 21.0 30.7 41.8

  Within recommendations 56,503 31.7 43.2 36.4 31.2 27.4 26.0 22.0

  > recommendations 56,503 42.6 21.5 32.8 50.2 51.6 43.3 36.1

First trimester (kg/week)b 49,569 0.003 (0.45) 0.16 (0.41) 0.07 (0.41) 0.00 (0.43) -0.05 (0.46) -0.08 (0.49) -0.12 (0.56)

Second trimester (kg/week)b 67,708 0.46 (0.30) 0.57 (0.26) 0.55 (0.27) 0.48 (0.28) 0.39 (0.29) 0.33 (0.30) 0.25 (0.36)

Third trimester (kg/week)b 67,822 0.51 (0.34) 0.54 (0.31) 0.55 (0.30) 0.51 (0.32) 0.48 (0.34) 0.46 (0.40) 0.45 (0.48)



Page 14 of 17Boone‑Heinonen et al. BMC Public Health          (2024) 24:886 

categories. These data are sufficient for calculating tri-
mester GWG using traditional methods, but also provide 
a foundation for minimizing study exclusions with mod-
eled data in future studies. These observed and modeled 
longitudinal data will enable us to fill longstanding and 
broadly recognized knowledge gaps about GWG in those 
with Class II and III obesity, as well as underweight. 
These gaps are largely due to insufficient sample sizes in 
most studies, requiring the combination of obesity class 
II and III together, or exclusion of underweight. In the 
PROMISE cohort, we have the ability to examine GWG 
and other pregnancy characteristics for the most vulner-
able groups: for example, those with high BMI and with 
fewer resources to support behavioral or clinical needs; 
and those with underweight, who may have additional 
risk factors such as tobacco use or food insecurity, and 
without sufficient resources to overcome them.

Limitations
We recognize limitations of the PROMISE cohort, 
stemming primarily from the reliance of EHR data on 
information recorded at clinical encounters at OCHIN 
clinics. This issue has several implications for poten-
tial biases. First, clinical data availability impacted the 
selection into the cohort: lack of availability of a base-
line weight measure (18.4%) was the largest reason for 
exclusion, driven by typically sparse clinical visits prior 
to pregnancy. We minimized this exclusion by expand-
ing the time window within which we accepted baseline 
weights and by incorporating pregravid weight, which 
is patient-reported at an initial prenatal care visit. Fur-
thermore, while pregnancies that were included in the 
PROMISE cohort showed some differences in baseline 
characteristics compared to those that were excluded, 
these differences were slight, with minimal differ-
ences in age, race and ethnicity, and spoken language. 
Second, missing data within the defined cohort were 
notable for some variables, particularly for pre- or 
early-pregnancy characteristics. We minimized missing 
data through our conceptually- and data-driven pro-
cess and will incorporate imputation methods in future 
analyses. Third, we lacked data from care received out-
side of the OCHIN network, including specialized or 
inpatient care. EHR-based algorithms for pregnancy 
identification typically include inpatient diagnoses [67, 
68]; while we conducted extensive exploratory analysis 
to appropriately identify diabetes mellitus and hyper-
tension prior to and during pregnancy using outpatient 
data, validity of these measures would be improved 
with inpatient data. Additionally, patients with comor-
bidities may be referred to specialized care outside of 
the OCHIN network. Those referred prior to or early 

in pregnancy could be excluded from our study popu-
lation, while those referred later in pregnancy may be 
lost to follow-up, or potentially misclassified (result-
ing in, for example, underascertainment of pregnancy 
hypertension). Lastly, we were unable to ascertain 
diagnoses or procedures that occurred during hospi-
tal admissions, including the childbirth hospitalization 
(e.g., induction of labor, severe maternal morbidity).

Limitations also include the absence of information 
on key confounders that are not available in the clinical 
record, such as diet, infant feeding, or other behavioral 
or contextual influences; however, we draw from exter-
nal data sources including birth records and GIS data 
where possible. We acknowledge that pregnancy and 
child weights and BMI are indirect estimates of adiposity, 
with systematic measurement error related to race and 
ethnicity. Finally, OCHIN clinics share a clinical data sys-
tem (OCHIN Epic®) but are otherwise independent enti-
ties. Most OCHIN clinics are Federally Qualified Health 
Centers, for which funding is tied to data collection, met-
rics, and certain types of performance, but there remains 
variation in clinical policies, processes, characteristics, 
and norms across clinics.

Next steps and future directions
The PROMISE cohort will support future research 
needed to inform future revisions of GWG guidelines, 
which will synthesize evidence informing optimal ranges 
of GWG that balance a wide range of maternal and child 
risks. Next steps include the characterization of GWG 
trajectories and estimation of their effects on child 
growth, at birth, in infancy, and at the time of school 
entry. These planned analyses will provide evidence with 
representation of socially marginalized populations and 
adequate sample size across all BMI categories.

This research project provides opportunities for future 
integration of additional data to improve measurement 
and confounding adjustment, and it supports investiga-
tion of additional determinants or outcomes of GWG. 
For example, follow-up maternal or child data could 
be incorporated for additional calendar years as data 
become available. Linkage of inpatient clinical or claims 
data would enable more robust characterization of preg-
nancy outcomes and in-hospital procedures or diagno-
ses. Incorporation of laboratory and other clinical data 
and natural language processing methods would support 
creation and validation of additional complex variables, 
such as asthma, heart disease, or autoimmune disease. 
Death certificate data can be linked to ascertain the rare 
outcomes of fetal or neonatal death, in order to quantify 
potential selection bias or examine as outcome variables. 
Within a subsample, primary collection of data on infant 
feeding, household environment, and other behavioral 
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and environmental variables would enable investigation 
of behavioral pathways and outcomes that occur outside 
of the clinical setting.

Conclusions
The PROMISE cohort enables the estimation of effects 
of GWG rate and timing on child outcomes in sub-
groups that lack a robust evidence base needed to form 
guidelines for pregnancy weight gain: those belonging to 
socially marginalized racial and ethnic populations, who 
are uninsured, publicly insured, discontinuously insured, 
or with low or high BMI. The cohort provides extensive 
longitudinal weight measures throughout pregnancy and, 
as shown in a previous publication [39], in the offspring. 
With these unique data, we will characterize GWG pat-
terns and their estimated effects on child growth, ulti-
mately improving the representation of GWG evidence 
and corresponding guidelines.
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