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Abstract

Human mobility plays an important role in the dynamics of infectious disease spread. Evidence from the initial
nationwide lockdowns for COVID− 19 indicates that restricting human mobility is an effective strategy to contain
the spread. While a direct correlation was observed early on, it is not known how mobility impacted COVID− 19
infection growth rates once lockdowns are lifted, primarily due to modulation by other factors such as face masks,
social distancing, and the non-linear patterns of both mobility and infection growth. This paper introduces a piece-
wise approach to better explore the phase-wise association between state-level COVID− 19 incidence data and
anonymized mobile phone data for various states in the United States. Prior literature analyzed the linear
correlation between mobility and the number of cases during the early stages of the pandemic. However, it is
important to capture the non-linear dynamics of case growth and mobility to be usable for both tracking and
forecasting COVID− 19 infections, which is accomplished by the piece-wise approach. The associations between
mobility and case growth rate varied widely for various phases of the epidemic curve when the stay-at-home
orders were lifted. The mobility growth patterns had a strong positive association of 0.7 with the growth in the
number of cases, with a lag of 5 to 7 weeks, for the fast-growth phase of the pandemic, for only 20 states that had
a peak between July 1st and September 30, 2020. Overall though, mobility cannot be used to predict the rise in the
number of cases after initial lockdowns have been lifted. Our analysis explores the gradual diminishing value of
mobility associations in the later stage of the outbreak. Our analysis indicates that the relationship between mobility
and the increase in the number of cases, once lockdowns have been lifted, is tenuous at best and there is no
strong relationship between these signals. But we identify the remnants of the last associations in specific phases of
the growth curve.
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Introduction
COVID− 19 has spread rapidly worldwide, nearing 99
million confirmed cases, and more than 2.1 million
deaths were reported globally as of January 25, 2021 [1].
Public health officials continue to promote social dis-
tancing, face masks, and handwashing as effective
mechanisms to contain the COVID− 19 outbreak [2],
especially due to delays in mass vaccination and the
growing number of new COVID− 19 strains [3]. The
importance of tracking human mobility as an essential
measure to understand and predict the spread of
COVID− 19 has been highlighted by many prior stud-
ies [2, 4–7]. Local governments continue to track hu-
man mobility in their communities through
anonymized cell phone data made available through
various data providers [8–10]. Several prior studies
[11–20] report a strong association between mobility
and stay-at-home orders. Further analysis by Gatalo
et al. [21] found that the early association between
mobility and COVID− 19 incidence withered after the
analysis was expanded to later epochs. This weaken-
ing association was likely due to non-pharmaceutical
interventions such as face masks, handwashing, main-
taining physical distance, avoiding large gatherings,
and school closings.
The incidence rate of COVID− 19 disease does not

follow a linear pattern, but rather follows a pattern of
rise and fall, i.e., a logistic or power-law pattern,
depending on the community’s response to contain
the spread [22–25]. Similarly, as communities started
to reopen, mobility also does not follow a linear pat-
tern. It is important to capture the association of
mobility and infection rate in presence of this non-
linearity. To our knowledge, no study has comprehen-
sively evaluated the association of mobility with

multiple phases of the pandemic growth pattern. This
analysis becomes important as public health officials
or policymakers can potentially use mobility as a
predictor to detect impending local spikes of cases
that are increasingly beginning to overwhelm clinical
capacity.
This study proposes the association of mobility with

the incidence growth rate of COVID− 19 by segmenting
different infection growth rates into multiple phases. We
used the formulations of different phases of Batista and
Wu’s logistic growth model [25, 26] to extract the
phases of the epidemic curve for various states in the
United States. The United States presents a unique sce-
nario since the peaks occurred across distinct epochs,
within different geographic regions with independent ad-
ministrative units. Thus, influenced by sets of multiple
factors. We specifically study how mobility affected the
case growth for various states following the lifting of ini-
tial stay-at-home orders.

Methods
Data collection and analysis
Infection data
The confirmed case data was retrieved from the data
from The New York Times [27] and JHU CSSE COVID
− 19 data [28]. This data provides county-level informa-
tion on daily reported cases. We aggregated the data to
weekly reports at the state level.

Mobility data
State-level mobility datasets and metrics were pro-
vided by Descartes Labs. Descartes index provides a
normalized aggregated mobility measure obtained
from anonymized mobile device locations. The mobil-
ity metric we use is the percentage change in mobility

Fig. 1 Various phases of the Logistic growth model for the State of Arizona
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relative to pre-pandemic baseline behavior (02/17/
2020 to 03/07/2020) [7].

Infection growth rate
We use the infection growth rate from the Classical
Logistic Growth Model, originally developed by
Haberman [29]. The logistic growth model is defined
by the differential eq. 1.

dC tð Þ
dt

¼ rC tð Þ 1−
C tð Þ
K

� �
ð1Þ

C(t) is the cumulative number of confirmed cases at

any given time t for an individual state, and dCðtÞ
dt is the

rate of change in the number of cases. The intrinsic
growth rate per unit time r and the expected epidemic
capacity K are estimated from the cases recorded over
time using non-linear least square curve fitting methods,
namely Levenberg-Marquardt, Trust Region Reflective
Method, and Nelder-Mead methods that are available as
part of the LMFIT Python package [30]. The peak of the

curve (i.e., inflection point) is denoted by tp is when d2C
dt2

and the number of cases Cp = K/2.

Phase-wise correlation
Our central idea is to separate the epidemic curve
(which we also refer to as the peak) into multiple
phases (or intervals) for the model, rather than fit
the correlation between mobility and for the entire
epidemic curve. We adopt a piece-wise correlation
to study how the correlation varies across these dis-
tinct phases of the epidemic curve. We draw our in-
spiration from the general idea of piece-wise
correlation and conditional correlation (also referred
to as time-varying correlation, or dynamic correl-
ation) that has been applied in several domains such

as image processing [31], econometrics [32, 33], and
bioinformatics [34] in situations where the distribu-
tion of relationship between variables is non-linear,
and as a result, the degree of correlation, slope, and
intercept vary across space or time.
The separation of the epidemic curve into 5-

phased intervals was done using the empirical ap-
proach adopted by Batista and Wu [25, 26] to separ-
ate the logistic growth curve generated. The phased
intervals are as follows: (a) Phase-I is called the early
growth phase (or ascending) where t < tp− 2

r (b)
Phase-II is the fast growth phase which falls between
the end of the lag phase (or slow growth phase t
< tp− 2

r ) and the peak tp, i.e. tp− 2
r < t < tp , (c) Phase-

III is the fast growth to steady-state tp < t < tp þ 2
r ,

(d) Phase-IV – steady-state tp þ 2
r < t < 2tP and fi-

nally (e) Phase-V is the ending phase t > 2tp. These
phases are illustrated for the logistic growth curve
for the State of Arizona in Fig. 1.
The peak time tp is at the 27th week, the slow growth

phase is until in t = 22 weeks, and the fast growth phase,
shown in grey shading is between 23rd to 27th week.
While theoretically five phases have been defined, in a
practical setting, Phase-V is only apparent in the post-
hoc analysis of the epidemic. Given that many states
have multiple peaks or constant changes in incidence
growth rate, Phase-V tail ends into the Phase-I of the
next peak and is considered the start of the second peak
of the epidemic. Given that our focus is to understand if
increased mobility affects growth in the number of cases,
we limited our analysis for Phase− 1 to Phase-IV. Our
sample includes all the 20 states that have completed a
peak after the relaxation of initial stay-at-home orders
(i.e. between July and September 2020). Before July, i.e.
between March and June 2020, 14 states had a peak.

Fig. 2 States classified according to whether they had an early peak (before July), mid peak (July to August), and late peak, (September onwards)
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Fig. 3 Mobility, Incidence, and Growth phases across states with the July–August peaking states highlighted
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Table 1 Correlation analysis for all the states from March to September

State Lag

1Week 2Weeks 3Weeks 4Weeks 5Weeks 6Weeks 7Weeks 8Weeks 9Weeks 10Weeks

Alabama 0 0 0 0.01 0.0 0.04 0.1 0.27 0.73 0.81

Alaska 0 0 0 0 0 0 0 0 0 0

Arizona 0.91 0.9 0.95 0.86 0.6 0.32 0.11 0.03 0 0

Arkansas 0 0 0 0 0 0 0.01 0.02 0.06 0.17

California 0.71 0.77 0.87 0.93 0.71 0.48 0.25 0.09 0.03 0

Colorado 0.02 0.06 0.15 0.4 0.79 0.71 0.3 0.08 0.01 0

Connecticut 0 0 0 0 0 0.07 0.37 0.88 0.68 0.43

Delaware 0.39 0.15 0.04 0.01 0 0 0 0 0 0

Florida 0.11 0.11 0.1 0.15 0.21 0.33 0.63 0.79 0.22 0.02

Georgia 0 0.01 0.01 0.02 0.04 0.1 0.24 0.52 0.96 0.53

Hawaii 0.51 0.72 0.99 0.74 0.52 0.37 0.29 0.29 0.37 0.58

Idaho 0 0 0 0 0 0 0 0 0.01 0.08

Illinois 0.1 0.24 0.48 0.93 0.61 0.26 0.07 0.01 0 0

Indiana 0.25 0.36 0.51 0.48 0.35 0.19 0.05 0.01 0 0

Iowa 0 0 0 0 0 0 0 0 0.01 0.03

Kansas 0.07 0.07 0.06 0.03 0.02 0.01 0 0 0 0

Kentucky 0 0 0 0 0 0 0 0.01 0.01 0.02

Louisiana 0.41 0.25 0.06 0.02 0 0.01 0.06 0.4 0.73 0.09

Maine 0.81 0.66 0.27 0.07 0.01 0 0 0 0 0

Maryland 0 0 0 0 0.07 0.72 0.23 0.01 0 0

Massachusetts 0 0 0 0 0.01 0.13 0.56 0.86 0.45 0.25

Michigan 0.08 0.38 0.7 0.04 0 0 0 0.01 0.23 0.73

Minnesota 0 0 0 0 0.01 0.02 0.04 0.12 0.29 0.6

Mississippi 0.01 0.02 0.02 0.01 0.01 0 0 0.01 0.03 0.21

Missouri 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.04

Montana 0 0 0 0 0 0 0 0 0 0

Nebraska 0.14 0.41 0.73 0.89 0.75 0.25 0.01 0 0 0

Nevada 0.16 0.19 0.26 0.4 0.62 0.95 0.63 0.28 0.08 0.01

New Hampshire 0 0 0 0 0 0.01 0.18 0.87 0.4 0.08

New Jersey 0 0 0 0.05 0.41 0.88 0.34 0.12 0.06 0.03

New Mexico 0.14 0.2 0.32 0.54 0.82 0.82 0.45 0.19 0.06 0.01

New York 0 0 0.06 0.47 0.77 0.28 0.1 0.05 0.04 0.03

North Carolina 0.02 0.02 0.04 0.07 0.13 0.24 0.44 0.76 0.78 0.36

North Dakota 0.01 0.01 0.01 0 0 0 0 0 0 0

Ohio 0 0 0 0 0.01 0.04 0.09 0.24 0.54 0.93

Oklahoma 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.04

Oregon 0 0 0 0.01 0.03 0.08 0.21 0.46 0.86 0.63

Pennsylvania 0.48 0.18 0.05 0.01 0 0 0 0 0 0

Rhode Island 0 0 0 0.01 0.43 0.42 0.08 0.09 0.29 0.76

South Carolina 0.02 0.02 0.03 0.06 0.12 0.22 0.44 0.8 0.65 0.22

South Dakota 0.08 0.06 0.04 0.01 0 0 0 0 0 0

Tennessee 0 0 0 0 0.01 0.02 0.04 0.12 0.31 0.71

Texas 0.09 0.11 0.13 0.18 0.26 0.4 0.62 0.94 0.66 0.28
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Several other states continued to have peaks after
September, but we limited our analysis to states that had
a complete peak before September.

The cross-correlation between mobility and growth
rate for various time lags for each phase p is obtained
using Pearson’s correlation coefficient (provided in equa-
tion (eq. 2)) to compute the monotonic relationship be-
tween the two variables, incidence growth rate I and
mobility index M for various phases (or intervals) of the
logistic growth model.

corr Ip;Mp
� � ¼

Xnp
i¼0

Ip;i−Ip;i
� �

Mp;i−Mp;i
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnp
i¼0

Ip;i−Ip;i
� �2

Mp;i−Mp;i
� �2s ð2Þ

where Ip is the value of the incidence growth rate dur-
ing phase p, and Mp is the lagged change in mobility
during the phase p. Ip, i and Mp, i are the incidence
growth rate and mobility rate at each sample point i,
and np is the total number of weeks during the phase p.

Results
Mobility trends of various states
The states were separated into three categories (as
shown in Fig. 2). The states that had an early surge
between March and June (early peak), states that
peaked in July and August (mid peak), and the states
that peaked after August (late peak). It is worth not-
ing that (based on data until November 30) the
groups of states that have reached their peak in these
epochs have been largely contiguous i.e., they clus-
tered in space. The northeast peaked early; states like
New York and New Jersey peaked in March and
April. The rest of the coast peaked in summer, with
states like Louisiana and Florida leading the outbreak
front. The midlands peaked last in Autumn and
Winter.
Figure 3 shows the mobility, reported cases, the case

growth rate for all the 50 states in alphabetical order.

We notice that there are multiple surges (which we refer
to as peaks). As discussed previously, when there is a
surge in a state, public health officials respond through
non-pharmaceutical interventions to flatten the curve.
Three significant points were used to model the peak
in each state. The inflection point (the tip of the
peak) is the time when the infection rate reaches the
highest number. The point of transition to the fast-
growth phase (i.e. Phase-II) is the point where the in-
fection growth rate begins to transition from the slow
growth phase (Phase-I) to the fast-growth phase. Fi-
nally, transition to Phase-III is where the infection
growth rate transitions from the fastest deceleration
phase to the slow deceleration phase. These phases
are shown in Fig. 3. The states that had completed a
peak (i.e. had at least all the 3 phases) between July
and September were highlighted in a red dashed
border. The background of each state plot is colored
by the corresponding epidemic phase of the state.
The three trend lines shown for each state are a.) the
incidence of cases b.) an automated piece-wise logistic
growth model fitted to the incidence of cases and c.)
the mobility in the state as measured by Descartes
Index. All the 3 trend lines have been applied min-max
scaling to share common axes. The X-Axis stands for
time, marked by months for major ticks and weeks for
minor ticks. The Y-Axis stands for the scaled values of
each series.
Of the 50 states in the United States, 14 states

reported their peak number of cases early in the US epi-
demic during April and May, 20 states had their peak
during July and August which are considered in the
scope of our study and the other 16 states were still
reporting an increasing number of cases in September. It
should be noted that while the 20 states had their peak
during July and August, their Phase-II may have started
as soon as May, and their Phase-III may have ended as
late as October. For example, the fast-growth rate phase
for the state of New Mexico spanned from May to July.
Similarly, the State of Iowa’s Phase-III extended until
November.

Table 1 Correlation analysis for all the states from March to September (Continued)

State Lag

1Week 2Weeks 3Weeks 4Weeks 5Weeks 6Weeks 7Weeks 8Weeks 9Weeks 10Weeks

Utah 0 0 0 0 0 0.01 0.01 0.02 0.05 0.08

Vermont 0 0 0 0 0 0 0.01 0.06 0.15 0.29

Virginia 0.99 0.59 0.3 0.16 0.13 0.3 0.87 0.03 0 0

Washington 0.01 0.02 0.07 0.2 0.43 0.77 0.78 0.37 0.11 0.02

West Virginia 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02

Wisconsin 0 0 0 0 0 0 0 0 0 0

Wyoming 0.01 0 0 0 0 0 0 0 0 0
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Table 2 Correlation analysis for Phase I for all the states with multiple lags

State Lag

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks

Alabama 0.58 0.89 0.56 0.6 0.03 0 0 0.03 0.5 0.6

Alaska 0 0.04 0 0.36 0.67 0.66 0.37 0.35 0 0.06

Arizona 0.48 0.5 0 0.07 0.03 0.03 0.02 0.03 0 0.53

Arkansas 0.7 0.88 0.65 0.55 0.8 0.05 0.03 0.02 0.05 0.7

California 0 0.04 0.03 0.02 0 0 0 0.03 0 0.46

Colorado 0.6 0.55 0.53

Connecticut

Delaware 0.9 0.56

Florida 0 0 0 0.23 0.78 0.09 0 0 0.02 0.6

Georgia 0.54 0.33 0.1 0.02 0.01 0.01 0.02 0.08 0.43 0.6

Hawaii 0.25 0.33 0.41 0.59 0.82 0.86 0.54 0.32 0.11 0.06

Idaho 0.16 0.35 0.68 0.82 0.52 0.2 0.07 0.05 0.06 0.11

Illinois 0.08 0.39 0.69 1

Indiana 0.36 0.12 0.02 0.01 0.01 0.03 0.27 0.67 0.45 0.23

Iowa 0.82 0.33 0.27 0.13 0.04 0.02 0.03 0.06 0.17 0.59

Kansas 0.44 0.15 0.11 0.16 0.07 0.67 0.86 0.31 0.11 0.18

Kentucky 0.32 0.65 0.83 0.54 0.23 0.14 0.05 0.01 0.01 0.01

Louisiana 0 0.03 0.39 0.59 0.01 0.29 0.58 1

Maine 0.03 0.59 0.51 1

Maryland 0.07 0.39 0.63 1

Massachusetts 0.7 1

Michigan 1 1

Minnesota 0.15 0.09 0.03 0.01 0.02 0.04 0.15 0.53 0.57 1

Mississippi 0.28 0.05 0 0 0.01 0.11 0.55 0.56 0.01 0.71

Missouri 0.14 0.41 0.74 0.78 0.61 0.27 0.2 0.07 0.02 0.01

Montana 0 0 0 0 0 0 0 0 0 0.01

Nebraska 0.22 0.05 0.01 0.01 0.02 0.15 0.6 0.63 1

Nevada 0.21 0.08 0.05 0.03 0.02 0.02 0.02 0.03 0.1 0.5

New Hampshire 0 0 0 0 0 0.03 0.31 0.95 0.32 0.07

New Jersey 0.72 1

New Mexico 0.03 0.01 0.02 0.05 0.18 0.71 0.45 1

New York 1

North Carolina 0.31 0.19 0.07 0.02 0.01 0.01 0.02 0.11 0.52 0.57

North Dakota 0.1 0.28 0.62 0.91 0.99 0.54 0.26 0.07 0.25 0.7

Ohio 0.16 0.03 0.01 0.02 0.03 0.12 0.51 0.62 1

Oklahoma 0.08 0.18 0.4 0.83 1 0.52 0.38 0.12 0.03 0.01

Oregon 0.26 0.09 0.07 0.03 0.02 0.02 0.02 0.04 0.14 0.63

Pennsylvania 0.58 1

Rhode Island 0.01 0 0.03 0.37 0.54 0.03 0 0.03 0.29 0.94

South Carolina 0.97 0.68 0.43 0.14 0.03 0.01 0.01 0.03 0.14 0.62

South Dakota 0.23 0.09 0.01 0.01 0.02 0.07 0.88 0.47 0.09 0

Tennessee 0.83 0.97 0.58 0.34 0.1 0.02 0.01 0.01 0.02 0.09

Texas 0.7 0.37 0.29 0.12 0.05 0.02 0.01 0.02 0.09 0.46

Utah 0.73 0.39 0.31 0.18 0.11 0.12 0.19 0.32 0.64 0.85

Vermont
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Relationship between mobility trends and infection
growth-rate
The lifting of stay-at-home-order decisions varied across
different states with no national mandate. States had var-
iations in terms of prior infections, non-pharmaceutical
interventions such as face masks, reopening guidelines,
and population density. This combination of factors re-
sulted in complex variations in mobility and infection
growth rate across different states. Performing a linear
continuation correlation across mobility and case growth
rate did not yield any consistent correlations. This was
also reported by Gatalo et al. [21].
We adopt a piece-wise association analysis approach

to capture the non-linear nature of infection growth and
understand if the correlations are associated with a par-
ticular phase. We also investigate the time lags between
mobility and infection rates for various phases. The cor-
relation was not consistently present across phases, and
when correlation exists, it is not consistent within each
phase. Table 1 shows the correlation between mobility
and infection growth with a lag of 5 to 7 weeks. The cor-
relation observations Phase-I, Phase-II, and Phase-II are
not necessarily consistent. The average correlation is ob-
served to be 0.15 ± 0.47 for the lag of 5 weeks between
the change in mobility and the incidence rate of the
cases. The similar number for Phases I, II, III, and IV are
−0.49 ± 0.5, −0.17 ± 0.57, −0.32 ± 0.43, and − 0.33 ± 0.86,
respectively. The associations are much stronger for
Phase-II for states that peaked during the July and Au-
gust of the US epidemic compared to the rest of the
phases. Another interesting observation is that for
phase-I, 13 out of 20 states have a strong negative cor-
relation for a 6-week lag. This variation is due to a wide
range of factors related to stay-at-home orders, prior
infection seeding in communities, and increased testing
rates. But the dominant factor for negative correlation is
likely because the mobility numbers for 5 to 7-week lag,
falls within March and April, where several states had
mobility going down due to stay-at-home orders.
These results demonstrate that the piece-wise correla-

tions capture the relationship between incidence growth
rate and the change in mobility more accurately than
performing linear and consistent correlation across mul-
tiple phases.

Table 2 shows the correlation between the case inci-
dence growth rate and the change in mobility for Phase
I of the pandemic during the study period. States that
had a longer Phase-I and Phase-II like Idaho and Iowa,
have a higher correlation compared to states like Ari-
zona and Nevada whose epidemic growth phases are
considerably quicker. Tables 3 and 4 show the correla-
tions for all 50 states for various lag periods for Phases
II and III.

Discussion
Monitoring mobility trends could potentially inform
mitigation measures towards slowing the spread of
COVID-19. It can help predict the fast growth phase
with exponential growth. The disparities in mobility and
case incidence rate across the country, during fall and
winter, indicate high variability in mitigation measures
and pandemic behavior in various states across the
United States. Given the non-linear nature of both mo-
bility and case growth trends, we adopted a piece-wise
approach to analyze the association between mobility
and case growth rate.
Both mobility and the dynamic of epidemic spread

vary quite widely in many aspects. First, the growth and
lag dynamics are different across different scales, i.e.
days, weeks, or months. Our choice of choosing weekly
case numbers was motivated by the need to account for
testing delays and the need to have an adequate sample
size. We need to further investigate how the growth
patterns vary across different temporal granularities.
Second, we can observe that the growth curve patterns
also differ across states. This difference is due to a com-
bination of factors ranging from population density, dif-
ferences in the actions of state and local authorities that
introduce restrictions, and differences in how people
adhere to social distancing restrictions in case of pro-
longed stay-at-home orders. Finally, mobility dynamics
vary widely across different states. We observe that in
most cases. The data until November shows that states
with low mobility had lower per-capita cases, whereas
most states had case increase in November irrespective
of stay-at-home orders or mobility. These combinations
of factors affect the relationship between mobility and
infection growth rate.

Table 2 Correlation analysis for Phase I for all the states with multiple lags (Continued)

State Lag

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks

Virginia 0.02 0.01 0.02 0.08 0.46 0.61 1

Washington 0.01 0.01 0.03 0.11 0.52 0.69 1

West Virginia 0.01 0.18 0.53 0.99 0.71 0.35 0.19 0.06 0.01 0.01

Wisconsin 0 0 0 0 0 0 0.02 0.04 0.11 0.27

Wyoming 0.13 0.18 0.15 0.58 0.99 0.25 0.04 0.05 0.55 0.92

Gottumukkala et al. BMC Public Health         (2021) 21:1669 Page 8 of 14



Table 3 Correlation analysis for Phase II for all the states with multiple lags

State Lag

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks

Alabama 0.11 0.01 0.01 0.01 0 0 0 0 0 0.03

Alaska 0.4 0.94 0.62 0.58 0.31 0.04 0 0 0 0

Arizona 0.72 0.1 0.01 0.02 0.02 0.06 0.01 0.04 0.82 0.09

Arkansas 0.68 0.42 0.04 0.01 0 0 0 0 0 0

California 0.12 0 0 0 0 0 0.01 0.03 0.23 0.13

Colorado 0 0 0.1 0.99 0.46 0.2 0.1 0.03 0.02 0.01

Connecticut 0.06 0 0.01 0.05 0.22 0.7 0.48 1 −1 −1

Delaware 0.05 0.5 0.06 0.01 0.01 0.01 0 0.01 0.02 0.08

Florida 0.04 0.09 0 0.01 0.02 0 0 0 0.02 0.19

Georgia 0 0 0 0 0 0 0 0 0.02 0.8

Hawaii 0.02 0.01 0.01 0.12 0.73 0.01 0.01 0 0.01 0

Idaho 0.6 0.26 0 0 0 0 0 0 0 0

Illinois 0 0 0.21 0.67 0.17 0.06 0.03 0.01 0.01 0.01

Indiana 0.63 0.33 0.12 0.16 0.13 0.21 0.43 0.35 0.08 0

Iowa 0.04 0.01 0 0 0 0 0 0 0 0

Kansas 0.04 0.06 0.02 0.02 0.92 0.53 0.06 0 0 0

Kentucky 0.08 0.15 0.94 0.37 0.05 0.01 0 0 0 0

Louisiana 0.01 0.03 0.01 0.01 0 0 0.05 0.48 0.66 0.17

Maine 0 0 0.62 0.4 0.09 0.04 0.01 0.01 0.01 0.03

Maryland 0.09 0.01 0.02 0.04 0.16 0.74 0.42 0.05 0.01 0

Massachusetts 0.06 0.01 0.01 0.03 0.17 0.59 0.54 1 −1 −1

Michigan 0.04 0.23 0.98 0.07 0 0 0.01 0.19 0.78 0.04

Minnesota 0 0 0 0 0 0 0 0 0.21 0.69

Mississippi 0.01 0.01 0.01 0.01 0 0 0 0 0.01 0.63

Missouri 0.03 0.05 0.11 0.71 0.37 0.05 0.01 0 0 0

Montana 0.12 0.08 0.02 0.55 0.69 0.6 0.35 0.18 0.08 0.79

Nebraska 0.75 0.83 0.88 0.89 0.92 0.59 0.18 0 0 0

Nevada 0.08 0 0 0 0 0 0 0 0.05 0.44

New Hampshire −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

New Jersey 0.05 0 0.03 0.18 0.61 0.53 1 −1 −1 − 1

New Mexico 0 0 0 0 0 0.03 0.71 0.11 0.02 0.01

New York 0.01 0.05 0.23 0.74 0.43 1 −1 −1 −1 −1

North Carolina 0 0 0 0 0 0 0 0 0.07 0.78

North Dakota 0.01 0.01 0.02 0.15 0.96 0.59 0.27 0.09 0.02 0

Ohio 0 0 0 0 0 0 0 0.24 0.59 0.21

Oklahoma 0.04 0.01 0 0.74 0.89 0.08 0.01 0 0 0

Oregon 0.02 0 0 0 0 0 0 0 0 0.19

Pennsylvania 0.7 0.22 0.06 0.02 0.01 0.01 0 0.01 0.02 0.07

Rhode Island 0.13 0.05 0.02 0 0 0 0 0 0 0

South Carolina 0.03 0.02 0.04 0.01 0.01 0 0 0 0 0.2

South Dakota 0 0 0 0.11 0.73 0.2 0.01 0.01 0 0

Tennessee 0.56 0.08 0 0 0 0 0 0 0 0

Texas 0.46 0.11 0.05 0 0 0 0 0 0 0.21
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This study uses an interval (or piece-wise) approach
to address the non-linear trend arising from non-
pharmaceutical interventions and pandemic behavior
to flatten the curve. We used a Logistic Growth
Model to separate the infection growth curve into
multiple phases and apply correlation to individual
phases. Most communities are experiencing multiple
COVID-19 infection waves, as infection rates are
modulated by lockdowns and other forms of non-
pharmaceutical interventions followed by periods of
relaxation.
We found that mobility has a strong correlation

with and fast-growth phase with a lag of 5 to 7 weeks,
but only in states with an early second peak. We
found that the second peak characteristics differed in
relation to the first peak and were consistently more
protracted in their response to the mobility signal.
When we examined the correlation between mobility
and the number of cases for March to September, we
observed that the correlations were not consistent
(Fig. 4). In this representative figure, we show the re-
lationship between the mobility index and the inci-
dence growth values for the state of Louisiana with a
lag of 6 weeks for the pandemic and each of the
phases described in Fig. 1.
The lack of consistency between mobility and the

number of cases for March to September could
partly be due to variations in how states have re-
laxed social distancing guidelines over time. During
the initial stay-at-home-order period, all the states
underwent a sudden drop in mobility. This decrease
in mobility correlated well with a drop in the num-
ber of cases for most states, after a lag period. How-
ever, the uptick in mobility in various states did not
follow a consistent pattern after reopening. For in-
stance, mobility in California stayed consistently
below 60% until September. In contrast, states like
Florida reopened quickly; with the mobility returning
to as much as 80%. We did not observe a consistent
positive correlation across multiple states during the
relaxing of stay-at-home orders.

Prior literature explored a linear association between
mobility and the number of cases. In this work, we argue
that the distribution is not a simple linear trend, and in-
stead we adopt a logistic growth model that is more
faithful to the characteristics of the data and show the
differential contribution of different phases which vary
significantly amongst themselves, but also show consist-
ent patterns that can be exploited in predicting subse-
quent spikes. In other words, a spike in mobility 5 to 7
weeks ahead may be an indicator of a state experiencing
a peak. This advanced warning could potentially help
states in advanced preparation for when hospitals may
be overwhelmed.
As we see in this instance and most states with a co-

temporal second peak, the correlation is much stronger in
Phase-II compared to the other phases. The association
between mobility and the number of cases is weaker in
other phases. While the mobility decreases slightly after
the number of cases increases, it is likely that the change
in public behavior due to increases in social distancing,
masks, testing, and other precautionary measures lead to a
rapid decrease in the number of cases. More research is
needed to confirm the influence of these factors, and to
understand the reduction in the number of cases while
the mobility stayed the same during the remaining phases
of the pandemic in some instances.
Mobility is a useful indicator and publicly available

mobility datasets from Safegraph and Descartes Labs can
be leveraged in the early part of the pandemic to moni-
tor population behavior in response to public health di-
rectives. However, their value wears off rapidly. We
attempted a finer-grained analysis to examine whether
the correlation is maintained at specific phases. While
some interesting insights were gained, the analysis was
not a practical tool that can generally predict the num-
ber of cases beyond the first peak due to a more noisy
set of factors complicating the analytic space. The
approach however may be useful in countries where a
more strict and consistent set of mitigation directives
have been applied, thus presenting a simpler analytic
space.

Table 3 Correlation analysis for Phase II for all the states with multiple lags (Continued)

State Lag

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks

Utah 0.01 0 0 0 0 0 0 0 0 0

Vermont 0 0 0 0.01 0.04 0.18 0.57 0.44 1 −1

Virginia 0.71 0.75 0.7 0.39 0.1 0.05 0.3 0.53 0 0

Washington 0 0 0 0 0 0.68 0.23 0.04 0.02 0.01

West Virginia 0.06 0.03 0.05 0.67 0.78 0.18 0.03 0 0 0

Wisconsin 0.24 0.59 0.82 0.21 0.31 0.5 0.09 0.02 0.15 0.84

Wyoming 0 0.03 0.29 0.65 0.15 0.03 0 0 0 0
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Table 4 Correlation analysis for Phase II for all the states with multiple lags

State Lag

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks

Alabama 0.11 0.01 0.01 0.01 0 0 0 0 0 0.03

Alaska 0.4 0.94 0.62 0.58 0.31 0.04 0 0 0 0

Arizona 0.72 0.1 0.01 0.02 0.02 0.06 0.01 0.04 0.82 0.09

Arkansas 0.68 0.42 0.04 0.01 0 0 0 0 0 0

California 0.12 0 0 0 0 0 0.01 0.03 0.23 0.13

Colorado 0 0 0.1 0.99 0.46 0.2 0.1 0.03 0.02 0.01

Connecticut 0.06 0 0.01 0.05 0.22 0.7 0.48 1 −1 −1

Delaware 0.05 0.5 0.06 0.01 0.01 0.01 0 0.01 0.02 0.08

Florida 0.04 0.09 0 0.01 0.02 0 0 0 0.02 0.19

Georgia 0 0 0 0 0 0 0 0 0.02 0.8

Hawaii 0.02 0.01 0.01 0.12 0.73 0.01 0.01 0 0.01 0

Idaho 0.6 0.26 0 0 0 0 0 0 0 0

Illinois 0 0 0.21 0.67 0.17 0.06 0.03 0.01 0.01 0.01

Indiana 0.63 0.33 0.12 0.16 0.13 0.21 0.43 0.35 0.08 0

Iowa 0.04 0.01 0 0 0 0 0 0 0 0

Kansas 0.04 0.06 0.02 0.02 0.92 0.53 0.06 0 0 0

Kentucky 0.08 0.15 0.94 0.37 0.05 0.01 0 0 0 0

Louisiana 0.01 0.03 0.01 0.01 0 0 0.05 0.48 0.66 0.17

Maine 0 0 0.62 0.4 0.09 0.04 0.01 0.01 0.01 0.03

Maryland 0.09 0.01 0.02 0.04 0.16 0.74 0.42 0.05 0.01 0

Massachusetts 0.06 0.01 0.01 0.03 0.17 0.59 0.54 1 −1 −1

Michigan 0.04 0.23 0.98 0.07 0 0 0.01 0.19 0.78 0.04

Minnesota 0 0 0 0 0 0 0 0 0.21 0.69

Mississippi 0.01 0.01 0.01 0.01 0 0 0 0 0.01 0.63

Missouri 0.03 0.05 0.11 0.71 0.37 0.05 0.01 0 0 0

Montana 0.12 0.08 0.02 0.55 0.69 0.6 0.35 0.18 0.08 0.79

Nebraska 0.75 0.83 0.88 0.89 0.92 0.59 0.18 0 0 0

Nevada 0.08 0 0 0 0 0 0 0 0.05 0.44

New Hampshire −1 −1 −1 −1 -1 -1 -1 -1 -1 -1

New Jersey 0.05 0 0.03 0.18 0.61 0.53 1 -1 -1 -1

New Mexico 0 0 0 0 0 0.03 0.71 0.11 0.02 0.01

New York 0.01 0.05 0.23 0.74 0.43 1 -1 -1 -1 -1

North Carolina 0 0 0 0 0 0 0 0 0.07 0.78

North Dakota 0.01 0.01 0.02 0.15 0.96 0.59 0.27 0.09 0.02 0

Ohio 0 0 0 0 0 0 0 0.24 0.59 0.21

Oklahoma 0.04 0.01 0 0.74 0.89 0.08 0.01 0 0 0

Oregon 0.02 0 0 0 0 0 0 0 0 0.19

Pennsylvania 0.7 0.22 0.06 0.02 0.01 0.01 0 0.01 0.02 0.07

Rhode Island 0.13 0.05 0.02 0 0 0 0 0 0 0

South Carolina 0.03 0.02 0.04 0.01 0.01 0 0 0 0 0.2

South Dakota 0 0 0 0.11 0.73 0.2 0.01 0.01 0 0

Tennessee 0.56 0.08 0 0 0 0 0 0 0 0

Texas 0.46 0.11 0.05 0 0 0 0 0 0 0.21
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Limitations
This study presents a novel way to examine the associ-
ation between mobility and infection rates for various
states in the United States. There are several areas where
this study can be potentially improved. First, this study
focuses on the association between the change in mobil-
ity and its effect on the increases in the number of cases.
This study does not take into effect, the many other fac-
tors like usage of masks, social distancing, the effect of
regulations, and the varying compliance from the public
that could have contributed to the number of cases.
Without detailed information for each of these vari-
ables, it would not be possible to model for the
causal effect of these factors in the incidence growth
rate. Second, the associations are computed at a
weekly granularity to overcome the non-uniform case
reporting issues where a higher number of cases are
reported over Mondays and Tuesdays while the num-
ber of cases reported over the weekend is lower. This
leads to a sample size of 37 weeks during the study
period, but as more data is collected, future studies
can look at longer periods and larger sample sizes to

validate these results. Third, the case data might be
prone to reported errors due to both reporting issues
as well as the outliers in testing when states update
their case numbers post-hoc. We partly handle these
issues by computing the incidence growth rate fitted
to the Logistic Growth Model which smoothens the
data, rather than the number of cases directly. Finally,
the mobility data considers the distance traveled by
individuals but does not capture the number of indi-
viduals making the trip. Incorporating the number of
trips or individuals might help enhance the relation-
ship between the number of cases and the mobility of
individuals.

Conclusion
We analyzed the trends in reported COVID-19 cases
and mobility for various states in the United States. We
noticed that the prior literature explored the correlation
between a power-law distribution in the case distribution
using simple linear modeling and we instead modeled
using a Logistic Growth Model, more faithful to the dis-
tribution of the case data. This allowed us to perform

Table 4 Correlation analysis for Phase II for all the states with multiple lags (Continued)

State Lag

1 week 2 weeks 3 weeks 4 weeks 5 weeks 6 weeks 7 weeks 8 weeks 9 weeks 10 weeks

Utah 0.01 0 0 0 0 0 0 0 0 0

Vermont 0 0 0 0.01 0.04 0.18 0.57 0.44 1 -1

Virginia 0.71 0.75 0.7 0.39 0.1 0.05 0.3 0.53 0 0

Washington 0 0 0 0 0 0.68 0.23 0.04 0.02 0.01

West Virginia 0.06 0.03 0.05 0.67 0.78 0.18 0.03 0 0 0

Wisconsin 0.24 0.59 0.82 0.21 0.31 0.5 0.09 0.02 0.15 0.84

Wyoming 0 0.03 0.29 0.65 0.15 0.03 0 0 0 0

Fig. 4 Correlation between incidence and mobility for Louisiana for various growth phases
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multiple piece (phase)-wise linear correlations. We how-
ever found the associations to be quite asymmetrical
across the phases.
Despite attempting to fit both linear and piece-wise cor-

relations into the second wave, we were unable to find
consistent patterns that would allow us to predict the rise
in the number of cases. Although we note several insights
in the distribution of the case data and its associations
with mobility, we conclude that it is not productive to as-
sociate mobility with cases beyond the first peak. This is
consistent with the findings of Gatalo et.al [21].
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