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Abstract

Background: Human influenza is characterized by seasonal epidemics, caused by rapid viral adaptation to
population immunity. Vaccination against influenza must be updated annually, following surveillance of newly
appearing viral strains. During an influenza season, several strains may be co-circulating, which will influence their
individual evolution; furthermore, selective forces acting on the strains will be mediated by the transmission
dynamics in the population. Clearly, viral evolution and public health policy are strongly interconnected.
Understanding population-level dynamics of coexisting viral influenza infections, would be of great benefit in
designing vaccination strategies.

Methods: We use a Markov network to extend a previous homogeneous model of two co-circulating influenza
viral strains by including vaccination (either prior to or during an outbreak), age structure, and heterogeneity of the
contact network. We explore the effects of changes in vaccination rate, cross-immunity, and delay in appearance of
the second strain, on the size and timing of infection peaks, attack rates, and disease-induced mortality rate; and
compare the outcomes of the network and corresponding homogeneous models.

Results: Pre-vaccination is more effective than vaccination during an outbreak, resulting in lower attack rates for the
first strain but higher attack rates for the second strain, until a “threshold” vaccination level of ~30-40% is reached,
after which attack rates due to both strains sharply dropped. A small increase in mortality was found for increasing
pre-vaccination coverage below about 40%, due to increasing numbers of strain 2 infections. The amount of cross-
immunity present determines whether a second wave of infection will occur. Some significant differences were
found between the homogeneous and network models, including timing and height of peak infection(s).

Conclusions: Contact and age structure significantly influence the propagation of disease in the population. The
present model explores only qualitative behaviour, based on parameters derived for homogeneous influenza
models, but may be used for realistic populations through statistical estimates of inter-age contact patterns. This
could have significant implications for vaccination strategies in realistic models of populations in which more than
one strain is circulating.

Background
Human influenza infection is characterized by seasonal
epidemics. This occurs because influenza A is able to
maintain its presence in human populations by evolu-
tionary adaptations to population-wide immunity, result-
ing in mutations that gradually change viral antigens
allowing the virus to evade immune detection, a process

known as “antigenic drift”. On account of these rapid
mutations, vaccination for influenza must be updated
annually on a global basis, following surveillance to
monitor the appearance of new strains [1]. Antigenic
drift also diminishes vaccine efficacy for mutant strains,
but may still confer partial immunity to these strains.
Therefore, understanding the short-term evolution of
influenza virus is crucial to developing seasonal vaccines.
Conversely, vaccination of a population may influence
the short-term evolution of the virus, for example by
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decreasing the number of hosts in which the virus may
replicate.
In general, during a single influenza season, more than

one viral strain is circulating. It is known [2,3] that when
suitable invasion conditions are satisfied, stable coexis-
tence of two different strains is possible. The coexistence
of two or more strains in a population will influence their
individual evolution; and furthermore, the selective forces
acting on the strains will be mediated by the transmission
dynamics in the population. For example, the infection of
hosts by one strain will reduce susceptibility to other
strains, thereby limiting their spread in the population
[4]. In addition, the time lag in emergence of a second
strain following onset of an epidemic by a first strain will
be influenced by the strategy and timing of vaccination
[5]. It is clear that viral evolution and public health policy
are strongly interconnected, and understanding the
population-level dynamics of coexisting viral influenza
infections, when vaccination of the population is to be
undertaken, would be of great benefit in designing such
vaccination strategies [6].
In [6], a homogeneous model of two viral strains was

developed, incorporating cross-immunity and delay in
emergence of the second strain. It was found that for
small delay and large cross-immunity, infections with
both strains appeared as a single epidemic wave; on the
other hand, with sufficient delay, a second epidemic wave
is possible. Further, for sufficient delay and high cross-
immunity, the population of susceptible hosts may
become so depleted as to prevent a second wave. These
findings, together with possible impact of vaccination on
antigenic drift, suggest that vaccination would be an
important factor to include [6].
In large populations, contacts between individuals are

not uniform, as assumed in the homogeneous model [6].
Typically, the number of contacts per day per individual
is much smaller than the population size, and the struc-
ture of the corresponding ‘contact matrix’ plays an
important role in the development of the pattern of the
disease [7]. The effects of spatial correlations [8], such
as occur when community structures are present [9],
were illustrated in the spread of drug resistance in a
network with mild clustering [10]: the spread of the
resistant strain occurred more rapidly, and at signifi-
cantly lower treatment levels, than was predicted by the
homogeneous model.
The present paper extends the model in [6] in a num-

ber of ways. The model includes either pre-vaccination
or vaccination during the epidemic, of a predetermined
part of the population. The contact structure is modelled
as a Markov network [11], in which the distribution of
degrees of the nodes (i.e., number of contacts for indivi-
duals in the population) is specified. In addition, the
model allows a distribution of ages in the population by

incorporating a prescribed number of age classes. The
Markov assumption for the contact network allows the
specification of structural parameters such as assortativity
[12] and clustering [13-15] that are important character-
istics of social groupings. These generalizations enable
vaccination to be targeted according to age group and
‘contact number’ (degree of node), which in general
respond to the vaccine in different ways. The model
inevitably contains many parameters and allows a wide
range of network structures to be specified; in addition,
initial conditions can be specified in many different ways.
Therefore, in this paper, only a simplified network model
will be investigated. The structure of the network is com-
prised of uncorrelated nodes, with degree distribution
specified as a truncated scale-free form [7]. Furthermore,
for simplicity only one or two age-classes are considered,
where, for the latter, the median age is chosen to separate
the two classes. While a detailed age distribution, charac-
teristic of a real population, could be specified, the pre-
sent results are intended to be illustrative only and to
allow comparison with the corresponding homogeneous
model. The network model can potentially be useful in
describing specific populations, such as a small or large
city, in which case the network structure and age distri-
bution would need to be determined from statistical ana-
lysis of demographic and census data [16].
Section 2 describes the model in broad terms, and lists

some of the parameter values used; technical details are
given in the Appendix. Section 3 presents the results of
simulations, in which the cross-immunity and delay in
appearance of the second strain infection are varied.
These results are also compared with those produced by
the corresponding homogeneous model, to ascertain the
importance of structure in the network for determining
the time-course and final extent (“total attack rate”) of
the disease. Finally, Section 4 discusses these results,
some possible extensions of the model, and implications
for vaccination strategies in more realistic models based
on specific demographic data.

Methods
The state flow diagram of the model is given in Figure 1,
which represents either the population counts in various
compartments in the homogeneous model or the state of
any given node (labelled by infection state, degree- and
age-class) in the network model. The model describes the
evolution of two concurrent strains of influenza infection,
over a duration short compared to the natural lifespan of
an individual in the population, and for this reason birth
and natural death processes are ignored, and furthermore
the number of individuals in each age class remains con-
stant. Since we consider a static contact network, the
degree class of each individual is also fixed. Therefore,
each individual in the population belongs to a unique
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class (k,a), where k denotes the number of contacts, and
a the age class, and the total number of individuals in
each (k,a) class is constant. S denotes the susceptibles
and V denotes individuals receiving vaccination either
prior to the onset of the first infection or after this onset.
Vaccination prior to the onset of infection is specified

by the fraction of susceptibles in each age class receiving
vaccination. For vaccination occurring during an out-
break, the following model is used: for individuals in
any given (k,a) class, the rate of vaccination at any given
time is (i) proportional to the current number of suscep-
tibles in the class; (ii) an increasing function of the total
current (symptomatic) infection in the population as a
whole, saturating at a prescribed rate. This was done to
attempt to model the social response to an outbreak in
the population, in which the greater the number of

infected individuals the more likely that susceptible indi-
viduals would avail themselves of existing vaccination
opportunities. The precise mathematical specification of
this response is given in the Appendix.
The baseline transmission rate of infection between a

susceptible-infected pair of individuals is denoted by τ.
The actual rate will depend on the age-classes that
these individuals belong to, and whether the susceptible
individual of the pair is seeing infection (by either
strain) for the first or second time. These various possi-
bilities are accounted for by expressing the actual trans-
mission rate as τ times a factor, which depends on age
classes involved, whether this is the first or second
infection, and whether the individual has received prior
vaccination. Details are given in the Appendix and in
Table 1.

Figure 1 State flow diagram for the two-strain influenza model. S denotes the susceptible state, without prior vaccination. Other susceptible
individuals may receive vaccination prior to the onset of infection, or after infection has appeared, and are denoted by V. Despite vaccination,
some individuals become infected and follow a similar sequence of infection states to that of the susceptibles. States (and parameters)
originating from vaccination are denoted by a subscript ‘V’. States representing symptomatic infection by strain j are denoted by Ij, and
correspondingly those infected asymptomatically by Aj. Double-subscripted states indicate that the individual was previously infected with one
strain, and is now progressing through infected states of the other strain. Pj denotes individuals partially recovered from infection by strain j, but
still susceptible to infection by the other strain. R denotes the class recovered from successive infection by both strains. In addition, infected
individuals may die (at rates d or dA) and transfer (via the dashed arrows) to a disease-induced death class D (not shown). See text for details
and explanation of the parameters.
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States labelled with I denote symptomatic infection,
and those labelled with A denote asymptomatic infection.
The P states describe immunity to one strain but not the
other: Pj is the state with immunity to strain j (j = 1, 2),
and R the state with immunity to both strains. In this
model, we exclude co-infection: at any given time, an
individual may be infected with at most one strain. State
Ij denotes infection with strain j; and Ijk denotes previous
infection with (and subsequent recovery from) strain j
and current infection with strain k (where k ≠ j). A simi-
lar notation applies to the A-classes. The efficacy of the
vaccine against strain j is denoted by sj.
Subscript ‘V’ denotes states of infection (or partial

recovery) arising from failure of the vaccine; and as
before, labels states with infection due to, or partial
recovery from, one of the strains. Following vaccination,
infection due to strain j occurs with probability (1-sj). In
general, for seasonal influenza, the vaccine is targeted
against the earlier-occurring strain 1 virus; its efficacy
against the later-occurring strain 2 (mutated) virus is
expected to be less, i.e., s2 < s1. As in [6], the delay T* in
appearance of strain 2 in the population is a parameter of
the model.
In Figure 1, the diverging pairs of directed edges are

labelled with branching ratios for each strain of infection,
with two pairs of such edges emanating from S and V
classes. For example, if S is infected with one of the
strains, it has a probability p of being symptomatically
infected, and 1-p of being asymptomatically infected.
(We assume that p is the same for both strains). Since S
may be infected with either strain, there are two pairs of
branches emanating from S in Figure 1. Similarly, there

are two branch pairs for V, representing infection due to
failure of the vaccine.
After recovery from one strain of infection, an indivi-

dual is still, in general, susceptible to infection by the
other strain: individuals in state Pj (i.e., recovered from
infection with strain j), can become infected with strain
k (≠ j) but with diminished probability δjk. The probabil-
ity of such infection being symptomatic is denoted by
pjk. Similarly, for individuals who have received prior
vaccination but still become infected by strain j, the
probability of strain k infection is denoted by pVjk.
Finally, the model allows for the possibility of disease-
induced death, denoted by the state D. The rates at
which these occur are assumed to be d or dA for symp-
tomatic and asymptomatic infections, respectively,
regardless of which of the disease states precede death;
furthermore, the death rates - as with other parameters
of the model – may depend on the age group in which
the death occurs.
The converging directed edges in this Figure are

labelled with the recovery rates from infection: either µ
(symptomatic infection) or µA (asymptomatic infection),
where we assume that these rates are the same for both
strains, regardless of whether this is the first or second
infection for that individual. The parameter values used
in the simulations are given in Table 1.
For the homogeneous model, we may apply the tech-

nique of the next-generation matrix [17] to derive the
basic reproductive number R0. In general, the second
strain appears after infection due to the first strain has
begun, so that R0 can be calculated using a one-strain
sub-model. With this assumption, we find
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where S0, V0denote the initial numbers of susceptible
and vaccinated individuals, respectively, in the popula-
tion, and b is the transmission coefficient. To establish a
relationship between b and the baseline transmission
rate τ between individuals in contact, we construct a
(single-age class) network in which the ‘edge probability’
of randomly choosing an edge, one of whose vertices
has degree k, is uniform. By relating this to the mean
field model we derive (see Appendix)

b
t≈ k

k
1

max

,

where k1= vertex degree of population sub-class into
which the Strain-1 infection is introduced at time t = 0,
and kmax = maximum vertex degree in the finite net-
work (kmax = 20 in the simulations). If we choose for
V0= 0.2, a conservative value R0 = 1.9 for influenza [10],

Table 1 Model parameters and their values [6]

Parameter Value Parameter Value

τ 3.5 d-1 pV12 0.3

δA 0.142 pV21 0.06

δ12= δ21 (δ) 0≤δ≤1 µ 0.244 d-1

δV1 0.8 µA 0.244 d-1

δV2 0.9 s1 0.8

p 0.6 s2 0.4

p12, p21 0.3 d 0.002 d-1

pV1 0.12 dA 0.002 d-1

pV2 0.36 T* 10d, 60d

The values used in the simulations reported here correspond to those
reported in [23,24] for influenza. See Section 2 and Appendix for descriptions
of parameters. Although data pertain to mean field (homogeneous) models, a
correspondence between these and network models of this paper - see
Appendix - enables one to apply these parameters to the latter type of
model. In particular, a relationship between the transmission coefficient of the
mean field model, b, and the baseline transmission rate τ between individuals
in contact, enables one to assign a value to τ via the mean field expression
for the basic reproductive number R0, as described in the Appendix. For the
simulations, with pre-vaccination rate V0 = 0.2, a value R0 = 1.9 was assumed,
representative of seasonal influenza and close to the value R0 = 1.8 used in
[25]. Without vaccination, the corresponding value of R0 would be 2.34 (see
Table 5).
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then using the above expressions for b and R0 we derive
τ = 3.5 d-1 for the transmission rate to be used in the
simulations. The value of R0 corresponding to this τ in
the absence of vaccination is R0 = 2.34.
In keeping with the definition of the two age class

model (see Appendix), the estimates of death rates
[18,19] arising from symptomatic or asymptomatic
infection (d, dA, respectively) for the two age-class
model correspond to the general population above and
below the median of the age distribution Pa which, for
the city of Vancouver, is about 38 years [20]. We
assume that the death rates due to natural causes are
negligible, and choose nominal values for the disease-
induced rates: d(a1) = d(a2) = 0.002 d-1 (Ref.[10]). These
rates vary with the particular circulating influenza
strains. Furthermore, we set d = dA in this illustrative
study.
In the model described above, the total number of

individuals Nk,a in each (k,a) class is fixed, and hence
the total population N (summed over all (k,a) classes) is
constant. Therefore, by dividing the number of indivi-
duals in class (k,a) in state X at any given time by N, we
may express the model in terms of the probability Xk,a

(t) that a randomly chosen individual is in state X, and
belongs to class (k,a), at time t. The resulting set of
ordinary differential equations describing this determi-
nistic model is given in the Appendix.

Results
The initial state was specified as follows. For pre-vaccina-
tion, a prescribed fraction V0(a) of individuals in each age
class a receive vaccination. Infection by strain 1 is intro-
duced into fraction ε1 of the remaining susceptibles resid-
ing in a single class (k1,a1). After the strain 1 infection has
spread through the population for a time T*, a strain 2
infection is introduced into a fraction ε2 of class (k2,a2)
individuals. In the simulations, we use ε1 = ε2 = 0.5; k1 = 5,
k2 = 10, and for the two age class model, a1 = 1, a2 = 2. As
previously mentioned, it is assumed that no individual
may be infected with both strains simultaneously. The
simulations were performed using three models: (1) net-
work model with two age classes; (2) network model with
one age class; and (3) the homogeneously-mixing ‘mean
field’ model. For (1) and (2), the structure of the network
was chosen to have a scale-free form [7], with the number
of individuals (nodes of the contact network) with k con-
tacts being proportional to k-2.5[21], and 1 ≤ k ≤ kmax =
20. Furthermore, the degrees of the nodes of the network
were assumed to be uncorrelated: although real networks
show significant correlation structure – e.g., clustering and
associativity [12-15] - the purpose of the present simula-
tions is to illustrate the general effects of departure from
the homogeneous mixing assumption. A value R0 = 1.9
was fixed for the mean field model with V0= 0.2.

Figure 2 compares the results from the network model
using one age class (top row), two age classes (middle
row), and the mean field model (bottom row), for delays
of T* = 10 days (left column) and 60 days (right col-
umn) for introducing strain-2 infection into a prescribed
sub-population. Solid curves correspond to a large (60%)
cross-immunity (with δ ≡ δ12 =δ21 = 0.4) between
strains, and dashed curves to a low (10%) cross-immu-
nity (δ = 0.9). These results show that the level of cross-
immunity has a significant effect on whether a second
wave appears: if it is too high (60%, δ = 0.4), then the
second wave does not appear in any of the three models.
For the 2-age class model (middle row), the (first) peak
infection occurs at a slightly lower value for the larger
cross-immunity: 0.03 vs. 0.033 fraction of the popula-
tion; however, the timing of these peaks (~75 days after
initial infection) is not sensitive to the level of cross-
immunity. Similar conclusions apply to the one age
class network model and the mean field model, though
the timing of these peaks is different for different
models.
As expected, if the second strain is introduced after

the strain 1 infection has been largely cleared from the
population (as is the case when T* = 60 days: right col-
umn), then the first and second waves behave as dis-
tinct, non-interacting one-strain epidemics. However,
when T* is only 10 days (left column), there is still a sig-
nificant presence of strain 1 infection in the population:
the infections in the two age-class model merge into a
single broad peak, whereas the other two models show
two distinct peaks, with the second peak occurring in
both models ~50 days after initial infection.
It is therefore apparent that the two age class network

model exhibits a larger delay in peak infection – for
both first and second waves – compared to the one age
class and mean-field models. This can be accounted for
by the reduced transmissibility between classes com-
pared to within one class, as well as reduced transmissi-
bility within the second age class (see the M matrix in
the Appendix). (Recall that strain 1 and 2 infections are
introduced into different age classes in the two age class
network model). Such differences in delays between
mean-field and structured models have been observed
elsewhere [10], and underline the importance of spatial
structure in determining the course of an epidemic.
Figure 3 shows the effect of different levels of pre-vac-

cination (V0 = 0.2 [dashed curves] or 0.4 [solid curves])
on the infection profiles, for each of the three models,
assuming a delay T* = 10 days in appearance of strain 2
infection. For all models, the peak infection is reduced
by about 50%, and occurs slightly later, when increasing
from 20% to 40% coverage. The peak infections in the
two age class model, however, occur at significantly
lower values than in the other two models: by a factor
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of 5 for the mean field model, and a factor of 10 for the
one age class network model. Again, this may be
accounted for by the reduced transmissibility between
different age classes. Notice also that, as in Figure 2, the
two age class model exhibits a single peak of infection
for both levels of vaccination.
In Figure 4, the two age class network model is used

to explore the effects of vaccination during an epidemic

outbreak, with no vaccination prior to the initial appear-
ance of strain 1 infection, where vaccination rates are
determined according to the “social response” to total
infection in the population, as described in Section 2
and the Appendix. The resulting infection profiles are
remarkably insensitive to (i) level of cross-immunity, (ii)
delay T*, and (iii) the rate of vaccination ω0. Apart from
a temporary decrease in the rate of disappearance of the
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Figure 2 Comparison of models: Varying cross-immunity and delay for introducing strain. 2 Comparison of results from network model
for one age class (top row), two age classes (middle row), and mean field (bottom row) models. Solid curves are for δ = 0.4 (60% cross-
immunity) and dashed curves for δ = 0.9 (10% cross-immunity). Plots in the left column are for the appearance of the second strain 10 days
after strain-1 infection starts; right column plots for the appearance of the second strain 60 days after initial strain-1 infection. For both network
models, strain 1 was introduced into class k = 5 and strain 2 into class k = 10. For the two age class model, infections were started in different
age classes. Note that a second wave appears only when the cross-immunity is small (dashed curves), apart from a small, delayed outbreak in
the one-age class model.
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infection when T* = 10 days and δ = 0.4 (top left in
Figure 4), there is only one peak of infection which
occurs consistently at very similar times (50 days after
strain 1 infection) and with peak magnitudes between
0.07 and 0.08 of the fraction of population. Comparing
these results to the two age class model with pre-vacci-
nation (middle row of Figure 2), it can be seen that the
peak infection occurs about 20-30 days earlier for vacci-
nation during the epidemic than when pre-vaccination
is carried out.
Tables 2, 3, 4 compare the attack rates when indivi-

duals are infected by each strain separately (represented
by the final values of the P1 and P2 compartments in
Figure 1) and by both strains in succession (represented
by the R compartment), for each of the three models. It
is seen that in general, for given T* and δ, the attack
rates predicted by the network models are quite differ-
ent between the model types. However for pre-vaccina-
tion, within each model, strain 1 attack rates increase,
while strain 2 attack rates decrease, with the delay T*.
For vaccination during the epidemic, these trends are
also seen though for strain 1 infection are less pro-
nounced. This is reasonable, because for longer T*, the

strain 2 infection draws upon a smaller pool of suscepti-
bles (and individuals with failed vaccination) which are
depleted by strain 1 infection for a longer time interval
before strain 2 appears. Also, as expected, strain 2 attack
rates are sensitive to the level of cross-immunity of the
strains, decreasing sharply as cross-immunity increases
from 10% to 60%. Variations between models are mani-
festations of the importance of heterogeneity of contact
structure. The dependence on age distribution between
network models in Tables 2, 3 is a consequence of our
assumption (see matrix M in the Appendix) that trans-
missibility within age class 1 is greater than that within
age class 2 or between age classes.
A question of importance to public health is the depen-

dence of both the attack rate and death rate due to infec-
tion. The attack rates are shown in Table 5 for the two age
class network model with T* = 60 days, and cross-immu-
nity of 10% and 60%. For pre-vaccination, as expected,
strain 1 attack rates decrease with increasing level of vacci-
nation, at first slowly then dropping off sharply between
V0 = 0.3 and 0.4 regardless of the level of cross-immunity.
Interestingly, the maximum attack rate due to strain 2
infections is reached in this range, and drops off sharply
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Figure 3 Comparison of models: Prior-vaccination coverage. Comparison of mean-field (a), one- and two age class network models ((b) and
(c), respectively), for different prior vaccination coverage of 40% (solid curves) or 20% (dashed curves). For the two age class model, strain-1 and
strain-2 infections occur in different age classes. The parameter δ = 0.9 (10% cross-immunity), and second strain infection begins at T* = 10 days
after first-strain infection.
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Figure 4 Comparison of models: Vaccination during outbreak. Comparison of total clinical infection resulting when vaccination is introduced
during a disease outbreak, for different vaccination rates. Left column is for T* = 10 days, right column for T* = 60 days. Top row: δ = 0.4; bottom
row: δ = 0.9. The underlying model is a two age class network model, and vaccination rates in each (k,a) class are proportional to the number of
susceptible individuals in that class. These rates are determined by the total infection in the general population, and saturate at a value of ω0 per
individual per day (see Appendix), where ω0 = 1 (solid curve), 0.5 (dashed curve) or 0 (dotted curve).

Table 2 Total attack rates for 2-age class network model

Attack rates: Prior vaccination
V0= 0.2, ω0 = 0.0

Attack rates: Vaccination during epidemic: V0= 0, ω0 = 1.0

δ T* Strain 1+2 Strain 1 Strain 2 Strain 1+2 Strain 1 Strain 2

0.9 10 0.149929 0.229126 0.178316 0.141735 0.393720 0.083434

0.9 60 0.115638 0.279763 0.117244 0.000858 0.541612 0.000404

0.4 10 0.037663 0.338132 0.082410 0.008601 0.528141 0.010630

0.4 60 0.000463 0.398912 0.000749 0.000001 0.542568 0.000003

For the 2-age class network model, the initial strain-1 infection occurs in a fraction ε1 = 0.5 of individuals in class (k1,a1) = (5,1), and initial strain-2 infection,
occurs at time T* = 10 or 60 days later, in a fraction ε2 = 0.5 of individuals in class (k2,a2) = (10,2). For these conditions, and the given degree- and age-
distributions, the initial number of strain-1 and strain-2 infections (introduced at times t = 0 and T*, respectively) in a population of size N = 10,000, is 67 and 12,
respectively.

Table 3 Total attack rates for 1-age class network model

Attack rates: Prior vaccination
V0 = 0.2, ω0 = 0.0

Attack rates: Vacc. during epidemic:
V0 = 0, ω0 = 1.0

δ T* Strain 1+2 Strain-1 Strain-2 Strain 1+2 Strain-1 Strain-2

0.9 10 0.706272 0.141649 0.098164 0.640962 0.139139 0.134720

0.9 60 0.706589 0.141371 0.098143 0.640968 0.139135 0.134721

0.4 10 0.136833 0.713552 0.027143 0.008607 0.775840 0.002266

0.4 60 0.000225 0.853501 0.000043 0.000058 0.785292 0.000015

For the 1-age class network model, fraction ε1 = 0.5 of degree class k1 = 5 is infected with strain-1 at time t = 0, and fraction ε2 = 0.5 of degree class k2 = 10
with strain-2 at time t = T* = 10 days or 60 days. The initial number of strain-1 and strain-2 infections (introduced at times t = 0 and T*, respectively) in a
population of size N = 10,000, is 67 and 12, respectively.
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thereafter. Thus, for the parameter values used, it appears
that vaccination is most effective around these values, with
diminishing returns for higher V0. Tables 6, 7 show that
death rates due to pre-vaccination are lower than pre-
dicted for the entire range of vaccination rates during an
epidemic; and in both cases the death rates decrease with
increasing levels of vaccination. Analogous to the attack
rates, there is a small increase in mortality for vaccination
coverage around 20%, due to increased numbers of strain
2 infections at the expense of reduced numbers of strain 1
infections; however, the mortality rate drops sharply once
the vaccination coverage exceeds about 40%.

Conclusions
We have considered extensions of the two viral strain
mean field (homogenous) model introduced in [6], to
explore the effects of both local network structure and
the division of the population into different age classes.
The present study used model parameter values (in par-
ticular, R0) originally estimated for mean field models;
and in order to translate these to the network models
derived in this paper, a correspondence was established
between the mean field model and a limiting case of the
network model (see Appendix). The two age class
model assumed the age boundary was located at the
median age (about 38 years for Vancouver), with vaccine
efficacy of 80% in the lower age group and 40% in the
upper age group.
Several notable features were observed when compar-

ing the network models to the corresponding mean field
case. Firstly, the amount of cross-immunity present is

significant in determining whether a second wave of
infection occurs. Due to a lower transmission rate
between age classes and within the second age class,
compared to within the first age class, infection levels
were found to be significantly less for the two age class
model than for either the one age class or mean field
models. The infections occurred as either a single wave
or as two successive waves. A second wave is more
likely to occur the longer the delay in introduction of
the second strain, since when this delay is short (~10
days) infections due to both strains merge into a single,
broad peak. When a second wave does occur, the shapes
of the two waves depend on when the second strain
infection is introduced. If it occurs well after the first
infection has run its course, then the two waves behave
as distinct, non-interacting infections. The second infec-
tion peak is delayed, and its amplitude reduced, in the
network model, compared to the mean field case. This
behaviour reflects a longer propagation time in the net-
work model, and has been qualitatively observed in
other models, reinforcing the importance of including
local network structure in realistic models.
As expected, the amount of cross-immunity between

the two strains is important in determining the size of
the second-strain outbreak. It was found that its size
decreased sharply with increasing cross-immunity. As
the level of vaccination increases, strain 1 attack rates
decrease, with a sharp drop occurring around 30-40%
pre-vaccination coverage; at the same time, strain 2
infections increase with increasing vaccination coverage,
reaching their maximum somewhere in this range, and

Table 4 Total attack rates for mean field model

δ T* Attack rates: Prior vaccination
V0 = 0.2, ω0 = 0.0

Attack rates: Vacc. during epidemic:
V0 = 0, ω0 = 1.0

Strain 1+2 Strain-1 Strain-2 Strain 1+2 Strain-1 Strain-2

0.9 10 0.334151 0.319792 0.163241 0.289341 0.370007 0.125953

0.9 60 0.335045 0.328586 0.152525 0.290336 0.372194 0.123627

0.4 10 0.031496 0.623353 0.038615 0.007640 0.653452 0.009348

0.4 60 0.001286 0.664957 0.001463 0.000537 0.664308 0.000645

For the mean field model, the initial conditions were chosen to be compatible with those of the 1-age class model - see Appendix and Table 3. The initial
number of strain-1 and strain-2 infections (introduced at times t = 0 and T*, respectively) in a population of size N = 10,000, is 67 and 12, respectively.

Table 5 Effects of varying pre-vaccination fraction on total attack rates for 2-age class network model

V0 R0 δ=0.4 δ=0.9

Strain 1+2 Strain 1 Strain 2 Strain 1+2 Strain 1 Strain 2

0 2.34 0 0.661707 0 0.001156 0.660372 0.000374

0.1 2.12 0.000016 0.539788 0.000013 0.035076 0.500271 0.018405

0.2 1.90 0.000463 0.398912 0.000749 0.115638 0.279763 0.117244

0.3 1.68 0.022769 0.205177 0.088641 0.091647 0.135334 0.209307

0.4 1.46 0.007655 0.019366 0.274655 0.014051 0.014563 0.286775

0.5 1.24 0.000339 0.004577 0.051839 0.000754 0.004131 0.054892

In all cases, no vaccination occurs during the epidemic, i.e., ω0 = 0, and the delay in appearance of second strain infection is T* = 60 days.
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drop off sharply for higher coverage levels. This phe-
nomenon is reminiscent of the development of drug
resistance, where there is an optimal level of drug treat-
ment (compare: vaccination coverage) that minimizes
the overall infection [10]. This could have significant
implications for vaccination strategies in realistic models
of populations in which more than one strain is
circulating.
It was found that increasing either pre-vaccination or

vaccination during an outbreak, reduces the disease-
induced mortality. Furthermore, pre-vaccination appears
to be more effective than vaccination during an out-
break in reducing overall mortality, though this needs
further investigation as it may depend critically on how
the latter is implemented. This study considered only a
simple model in which at any given time vaccination
rates during an outbreak were governed by the total
infection in the population at that time, and considers
only vaccination of the susceptible class S, neglecting
vaccination of other classes (e.g., P1 and P2 and asymp-
tomatic cases).
As mentioned earlier, the particular form of the terms

included in the model to incorporate local network
structure and the effects of age classes was chosen for
illustrative purposes. This approach, though, can be
used on a specific population if sufficient data are

available to determine realistic estimates of the age
classes and network structure present and of the para-
meters of the model. The main difficulty is in determin-
ing the form of the two-point correlations between
vertices of the contact network for a realistic particular
population, and this must be derived indirectly from
estimates of network structure extracted from the data
[16]. An intermediate approach is to explore the effects
of a few network structure parameters – e.g., clustering,
associativity, betweenness, and centrality [7,16], obtain-
ing expressions for the two-point probabilities defining
the Markov network directly in terms of these para-
meters. This is currently under investigation.

Appendix: Effects of vaccination and population
structure on influenza epidemic spread in the
presence of two circulating strains
The various parameters in the model (Figure 1 of main
text) are defined below:
τ = baseline transmission rate between a susceptible-

infected pair
p = probability of developing symptomatic infection

with no prior exposure
pV1, pV2 = probabilities of pre-vaccinated individuals

developing symptomatic infection from strains 1 and 2,
respectively, with no prior exposure
s1, s2 = effectiveness of vaccine to strains 1 and 2,

respectively
δV1, δV2 = reduction in transmissibility of strains 1 and

2, respectively, for vaccinated individuals
p12 = probability of developing symptomatic infection

with prior exposure to strain 1
pV12 = probability of pre-vaccinated individuals devel-

oping symptomatic infection with prior exposure to
strain 1
p21 = probability of developing symptomatic infection

with prior exposure to strain 2
pV21 = probability of pre-vaccinated individuals devel-

oping symptomatic infection with prior exposure to
strain 2
δA = reduction in infectiousness due to asymptomatic

infection
µ, µA = recovery rates from symptomatic and asymp-

tomatic infections
δ12, δ21 = level of cross-immunity induced by previous

exposure to strain 1 and strain 2, respectively
d, dA = disease-induced death rates, assumed to be

age-dependent but the same for each type of infection.
Define age classes 1 ≤ a ≤ amax, and network degree

classes 1 ≤ k ≤ kmax. Let

ΘU

a k

k a t M a a kP k a k a U k a t, , , ’ ’, ’ | , ’, ’,
’ ’

( ) = ( ) ( ) ( )∑ ∑

Table 6 Effect on death rate of pre-vaccination

V0 Fraction of deaths Pre-vaccination EffectiveR0

δ = 0.4 δ = 0.9

0 0.00542 0.00544 2.34

0.1 0.00442 0.00486 2.12

0.2 0.00328 0.00518 1.90

0.3 0.00279 0.00434 1.68

0.4 0.00254 0.00270 1.46

0.5 0.00047 0.00050 1.24

All results are for 2 age class network model, with delay in introduction of
strain-2 of T* = 60 days, and cross-immunity of 60% (δ = 0.4) and 10% (δ =
0.9). The case of pre-vaccination only (ω0 = 0) is considered below.

Table 7 Effect on death rate of vaccination during
epidemic

ω0 Fraction of deaths Vaccination during epidemic

(δ = 0.4) (δ = 0.9)

0 0.00542 0.00544

0.1 0.00529 0.00530

0.2 0.00516 0.00517

0.4 0.00495 0.00496

0.8 0.00459 0.00460

1.0 0.00445 0.00446

All results are for 2 age class network model, with delay in introduction of
strain-2 of T* = 60 days, and cross-immunity of 60% (δ = 0.4) and 10% (δ =
0.9). The case of vaccination only during epidemic (V0 = 0) is considered.
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for U Î {A1, AV1,I1, IV1,A21, AV21,I21, IV21, A2, AV2, I2,
IV2, A12, AV12, I12, IV12}, denote the force of infection for
age-class a and degree-class k. Here, M(a,a′) denotes the
relative transmission coefficient between age-groups, so
that τM(a,a′) = transmission coefficient between a sus-
ceptible individual of age-class a in contact with an
infected individual of age-class a′. Also, P(k′,a′|k,a) is
the probability that an individual (node) of age-class a
and degree-class k has a neighbour (adjacent node) of
age-class a′ and degree-class k′.
In the special case that the contact network is the

same for all age-classes, P(k′,a′|k,a) = Pa(a′|a)P(k′|k),
where Pa ( a′|a) denotes the probability that an age-
class a individual has an age-class a′ neighbour. The two
conditional distributions obey the conditions

P a aa

a

’ | ;
’

( ) =∑ 1

P k k
k

’ | .
’

( ) =∑ 1

In the general case, P k a k a
ka

’, ’ | ,
’’

( ) =∑∑ 1 . If the

node-degrees are uncorrelated, then P(k′|k) = Pe(k′),
where Pe(k) is the edge distribution [22], defined as
the probability of randomly drawing an edge con-
nected to a vertex of degree k. It is related to P(k), the
vertex distribution, by P k kP k ke ( ) = ( ) / Similarly, if
the age distributions are uncorrelated, then Pa(a′|a) =
Pa(a′). Thus, for uncorrelated age-structured networks,
which are considered in this paper, P(k′,a′|k,a) = Pa(a
′)Pe(k′). In the present study, the degree distribution
follows a scale-free form [7] P(k) ~ k-g, where we have
chosen g = 3.5. In this paper, we consider only one or
two age classes (amax = 1, 2); more realistic models
would incorporate demographic data on several ages
classes (typically, amax ≥ 4), but as discussed in the
main text, the model simulations are only intended to
illustrate the effects of heterogeneous contact- and
age-structure, in comparison with homogeneous mod-
els. For the simulations reported in the main paper,
we have for the one-age class model: Pa(a) = 1, and
for the two age class model we chose Pa(a1) = Pa(a2)
= 0.5, and

M =
⎛

⎝
⎜

⎞

⎠
⎟

1 0 7

0 8 0 85

.

. .

We extend the homogeneous (mean-field) model
in [6] to a Markov network model with age structure,
and include vaccination of strain 1 prior to onset of

influenza outbreak. Furthermore, we extend this model
to allow vaccination during an epidemic, by introducing
a flux � of susceptibles from the S classes to their corre-
sponding V classes, according to the prescription:
(i) � is a function of the total (symptomatic) infection

in the population, Itot (summed over all k and a), and �
= 0 when Itot = 0;
(ii) � is proportional to the population in class S(k,a,t);
(iii) � eventually saturates at a maximum value as Itot

increases.
A functional form that satisfies these criteria is

j w
a

= ( ) ( ) = ( )
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( )u I S k a t a
I

I
S k a ttot

tot
n

n
tot
n, , , ;0

where ω0 is the (age-class dependent) saturation rate
of vaccination, a is the value of Itot at half-saturation,
and n > 0 governs the steepness of the response curve.
In the simulations, a = 0.4 (i.e., half-saturation occurs
when 40% of population is infected), and n = 2.
In order to incorporate death due to infection, we add

a set of classes {D(k,a,t)} to the model, and (similar to
the recovery rates) assume that death rates are either d
(for all symptomatic infections) or dA (for all asympto-
matic infections).
Based on Figure 1 (main text), this gives rise to the

following set of 24×(amax×kmax) equations:
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where S ≡ S(k,a,t), etc., and the force of infection ΘU

may be expressed as
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where U Î {A1, AV1,I1, IV1,A21, AV21,I21, IV21,A2, AV2,I2,
IV2,A12,AV12,I12,IV12}, and
C k a k a M a a kP k a k a, , ’, ’ , ’ ’, ’ | ,( ) = ( ) ( ) is the connec-
tivity matrix, defined by the contact structure of the
population. Also,
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This shows that the various Θ(k,a,t)’s describe the
connectivity of a vertex of degree k and age-class a to
all the infected adjacent vertices.

Comparison with mean field model
In order to make this comparison, we need to obtain a
“limiting” form of the network model that approximates
the mean field model. This will enable us to obtain a
relationship between the mean field model transmission
rate b and the transmission rate τ between a suscepti-
ble-infected pair in the network. We consider a simpli-
fied network model consisting of a single age class, and
an uncorrelated network (so that P(k’|k)=Pe(k’)), and
further that Pe is a uniform distribution: Pe(k) = 1/kmax,
where kmax is the maximum degree in the network.
With these assumptions, (A3) simplifies to

ΘU

k

k

k
U t U t U k t= = ∑t

max

( ), ( ) ( , ).where

Therefore, the equation for S(k,t) becomes

∂ ( )
∂

= − ( ) + + +( )S k t

t
kS k t

k
f f g gV v V v

.
,

max

t
d d1 2

where the term in parentheses is independent of k.
Assume that S(k,t) = P(k)S(t), etc.; then this becomes
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Summing over k from 1 to kmax, we obtain
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where k kP k
k

= ∑ ( ) is the mean degree of nodes in the
network.
Comparing this approximation with the Mean Field

expression for dS/dt, suggests we make the following
correspondence:

b
t≈ k

kmax

More realistically, since we introduce Strain-1 infec-
tions into the sub-population defined by (k,a) = (k1,a1),
and taking account of the fact that R0is defined in terms
of the first generation of infection, it would be more
accurate to replace k by k1, so that

b
t≈ k

k
1

max
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Using this approximate relationship enables us to
compare the simulation of the behaviours of the net-
work and mean-field models, by relating numerical
values of the parameters b and τ through the simplified
limiting case of a network in which the probability of
drawing an edge at random from the network is
uniform.

Initial conditions for the mean field model
In what follows, it is assumed that the total population
(including deaths) is normalized to unity, which is per-
missible since for this model it is constant. The initial
conditions for the mean field model must be consistent
with those of the network model. The analysis that fol-
lows applies to an arbitrary number of age classes and
degree distributions.
In the network model, at t = 0 a fraction ε1 of Strain-1

infection is introduced into the sub-population in class
(k1,a1). Therefore, we specify the initial conditions at t =
0 according to
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where Pka1 ≡ P(k1)Pa(a1) represents the fraction of the
total population in class (k1,a1). Similarly, at t = T*
when strain 2 infections are introduced to a fraction ε2
of the sub-population in class (k2, a2), the corresponding
mean field conditions are modified as follows:
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S V
S P

V

S V
V2 2 2 2 21e e s; are

the changes in the susceptible and vaccinated sub-

populations, respectively, and Pka2 ≡P(k2)Pa(a2) is the
fraction of the total population in class (k2,a2).
In order to allow comparison between Mean Field

and network models, all age-dependent parameters
δA, δV1, δV2, s1, s2, µA, µ, dA, d, etc., in the net-
work model are replaced by their age-distributed

averages: d dA
MF

a A

a

P a a= ( ) ( )∑ , etc., where without risk

of ambiguity we may drop the ‘MF’ superscript.
For the network model, for all age classes we set ε1 = ε2

= 0.5, p = 0.6, V0= 0.2, s1 = 0.8, s2 = 0.4. For the two
age-class model, we chose (k1,a1) = (5,1), (k2,a2) = (10,2);
and for the one-age class model k1 = 5, k2= 10. The
(truncated) scale-free distribution P(k) ~ k-3.5 with kmax =
20 yields Pka1 = 0.0067, Pka2 = 0.0012 (so that, in a popu-
lation of N = 10,000, the number of infections is 67 and
12, respectively), where we are assuming Pa to be uni-
formly distributed in the 2-age-class model: Pa(a1) = Pa
(a2) = 0.5.
Substituting these values into the expression for R0

(Section 2 in main paper), and using R0 = 1.9, V0 = 0.2,
kmax = 20, and k1 = 5, yields the values b = 0.8765, and
τ = 3.5 d-1. For V0 = 0.4, using the same value τ = 3.5 d-
1, the corresponding value of R0 is 2.34.
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